

IBM VisualAge C++ for OS/2

Open Class Library Reference
Volume I

Version 3.0

S25H-6965-00

ÉÂÔ IBM VisualAge C++ for OS/2

Open Class Library Reference
Volume I

Version 3.0

S25H-6965-00

 Note!

Before using this information and the product it supports, be sure to read the general information under

“Notices” on page vii.

First Edition (May 1995)

This edition applies to Version 3.0 of IBM VisualAge C++ for OS/2 and to all subsequent releases and modifications until

otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked

at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments

to:

IBM Canada Ltd. Laboratory

Information Development

2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to

IBM. See “Communicating Your Comments to IBM” for a description of the methods. This page immediately precedes the

Readers’ Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it

believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1995. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to

restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . 1

Part 1. Complex Mathematics Library 5

complex Class . 7

c_exception Class . 15

Part 2. I/O Stream Library . 19

filebuf Class . 21

fstream, ifstream, and ofstream Classes . 25

ios Class . 31

iostream and iostream_withassign Classes . 45

istream and istream_withassign Classes . 47

Manipulators . 57

ostream and ostream_withassign Classes . 61

stdiobuf and stdiostream Classes . 69

streambuf Class . 73

strstream, istrstream, and ostrstream Classes . 87

strstreambuf Class . 91

Part 3. Flat Collection Classes . 95

Introduction to Flat Collections . 97

Flat Collection Member Functions . 101

Bag . 133

Deque . 139

Equality Sequence . 145

Heap . 149

Key Bag . 153

Key Set . 159

Key Sorted Bag . 165

Key Sorted Set . 171

Map . 181

Priority Queue . 189

Queue . 193

Relation . 197

Sequence . 201

Set . 207

Sorted Bag . 213

Sorted Map . 219

 Copyright IBM Corp. 1993, 1995 iii

Sorted Relation . 225

Sorted Set . 229

Stack . 237

Part 4. Tree Collection Classes . 243

Introduction to Trees . 245

N-ary Tree . 247

Part 5. Auxiliary Collection Classes 265

Cursor . 267

Tree Cursor . 271

Iterator and Constant Iterator Classes . 275

Pointer Classes . 277

Part 6. Abstract Collection Classes 281

Collection . 283

Equality Collection . 285

Equality Key Collection . 287

Equality Key Sorted Collection . 289

Equality Sorted Collection . 291

Key Collection . 293

Key Sorted Collection . 295

Ordered Collection . 297

Sequential Collection . 299

Sorted Collection . 301

Part 7. Data Type and Exception Classes 303

Class Hierarchy . 305

I0String . 307

IAccessError . 319

IAssertionFailure . 321

IBase . 323

IBase::Version . 327

IBitFlag . 329

IBuffer . 333

ICLibErrorInfo . 347

IDate . 351

IDBCSBuffer . 361

IDeviceError . 371

IErrorInfo . 373

iv VisualAge C++ Open Class Library Reference

IException . 379

IException::TraceFn . 387

IExceptionLocation . 389

IGUIErrorInfo . 391

IInvalidParameter . 395

IInvalidRequest . 397

IMessageText . 399

INotificationEvent . 403

INotifier . 407

IObserver . 411

IObserverList . 413

IObserverList::Cursor . 417

IOutOfMemory . 419

IOutOfSystemResource . 421

IOutOfWindowResource . 423

IPair . 425

IPoint . 431

IPointArray . 435

IRange . 439

IRectangle . 441

IRefCounted . 453

IReference . 455

IResourceExhausted . 459

ISize . 461

IStandardNotifier . 463

IString . 469

IStringEnum . 501

IStringParser . 503

IStringParser::SkipWords . 513

IStringTest . 515

IStringTestMemberFn . 519

ISystemErrorInfo . 523

ITime . 527

ITrace . 533

IVBase . 541

IXLibErrorInfo . 543

Part 8. Database Access Class Library 547

Database Access C++ Classes . 549

Database Access C++ Exception Classes . 559

Database Access SOM Classes . 569

 Contents v

Part 9. Appendix, Bibliography, Glossary, and Index 573

Appendix A. Header Files for Collection Class Library Coding Examples . . 575

Glossary . 587

Bibliography . 601

Index . 603

vi VisualAge C++ Open Class Library Reference

 Notices

Any reference to an IBM licensed program in this publication is not intended to state

or imply that only IBM’s licensed program may be used. Any functionally equivalent

product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and

verification of operation in conjunction with other products, except those expressly

designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this

document. The furnishing of this document does not give you any license to these

patents. You can send license inquiries, in writing, to the IBM Director of Licensing,

IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594 USA.

This publication may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All such names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

Programming Interface Information

This book is intended to help you develop applications that use the C++ class libraries

provided with VisualAge C++. This publication documents General-Use

Programming Interface and Associated Guidance Information provided by

VisualAge C++.

General-Use programming interfaces allow the customer to write programs that obtain

the services of VisualAge C++.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines

Corporation in the United States or other countries or both:

C Set ++ Common User Access

CUA IBM

IBMLink Open Class

OS/2 SAA

Systems Application Architecture VisualAge

WorkFrame

 Copyright IBM Corp. 1993, 1995 vii

UNIX is a registered trademark in the United States and other countries licensed

exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double

asterisk (**), may be trademarks or service marks of others.

viii VisualAge C++ Open Class Library Reference

Who Should Use This Book

About This Book

This book describes the classes and class members of the C++ class libraries that are

part of IBM Open Class Library, the comprehensive set of class libraries provided

with VisualAge C++. The book covers the following IBM Open Class libraries:

¹ The Complex Mathematics Library

¹ The I/O Stream Library

¹ The Collection Class Library

¹ The Data Type and Exception Class Library

¹ The Data Access Class Library

Volume I of this document does not provide information on classes or functions of

the User Interface Class Library. See Volumes II and III for descriptions of that

library's classes or functions.

The book is divided into parts, with one or more parts for each of the class libraries

listed above.

Who Should Use This Book

This book is intended for skilled C++ programmers who understand the concept of

classes. Programmers who want to work with the Collection Class Library should

also be familiar with using C++ templates. Use this book if you want to do any of

the following in your C++ programs:

¹ Manipulate complex numbers (numbers with both a real and an imaginary part)

¹ Perform input and output to console or files using a typesafe, object-oriented

programming approach

¹ Implement commonly used abstract data types, including sets, maps, sequences,

trees, stacks, queues, and sorted or keyed collections

¹ Manipulate strings with greater ease and flexibility than the standard C++ method

of using character pointers and the string functions of the C string.h library

¹ Use date and time information and apply member functions to date and time

objects

¹ Use Data Access Builder generated source code in conjunction with the Data

Access Builder classes to access a DB2/2 relational database.

How to Use This Book

For introductory information on the class libraries, or information on how to use the

class libraries, see the Open Class Library User's Guide. For detailed information on

 Copyright IBM Corp. 1993, 1995 1

About Examples

a particular class or member function, use this book. If you know what library a

class is in, you can look at the table of contents entries for that library, and find the

corresponding class. If you know what class within a library a given function is in,

you can look at the table of contents entries for that library, find the class, and look

for the member function within that class. If you do not know what library or class

to look in, you can use the index.

Classes are organized alphabetically within each class library, except where classes

with similar uses or characteristics are grouped together. Functions and data members

are listed alphabetically at the start of each class chapter, and their descriptions are

grouped according to their purpose. If a class has more than one version of a

function, all versions are described in one place. For the Collection Class Library, all

functions of flat collections are described in “Flat Collection Member Functions”

on page 101 , because each of these functions is used by many or all of the

Collection Classes.

A Note about Examples

The examples in this book explain elements of the C++ class libraries. They are

coded in a simple style. They do not try to conserve storage, check for errors,

achieve fast run times, or demonstrate all possible uses of a library, class, or member

function.

Source Files for Collection Class Library Examples

The Collection Class Library examples contained in this book can get you started on

particular collection classes. Source code and makefiles for these examples are

located in ...\ibmclass\samples\iclcc. If you want to understand the examples in

more detail, you can read through the source files and header files. See
Appendix A, “Header Files for Collection Class Library Coding Examples” on
page 575 for a listing of the example header files.

Icons Used in This Book

The icons in this book let you quickly scan pages for key concepts, examples,

cross-references, and other information.

This icon identifies important concepts, programming, and performance tips for using

VisualAge C++.

This icon identifies examples that illustrate how to use a particular language feature

or other concept presented in the book.

This icon identifies cross-references to related information in this or other books. The

icon may appear in the left margin where a number of cross-references are collected,

2 VisualAge C++ Open Class Library Reference

Related Books

or in miniature form within the text of a paragraph (like this:) where only one or

two cross-references are shown.

Motif This icon identifies information that applies only to Motif** versions of the Data

Types and Exceptions classes.

PM This icon identifies information that applies only to Presentation Manager versions of

the Data Types and Exceptions classes.

This icon identifies portability information that you should refer to when you are

writing programs that use the Data Types and Exceptions classes and you want those

programs to run on multiple platforms.

 Related Documentation

See “Bibliography” on page 601 for a list of related books and suggested reading

materials.

 About This Book 3

Related Books

4 VisualAge C++ Open Class Library Reference

Part 1. Complex Mathematics Library

complex Class . 7

Constants Defined in complex.h . 7

Constructors for complex . 8

Mathematical Operators for complex . 9

Input and Output Operators for complex . 11

Mathematical Functions for complex . 11

Trigonometric Functions for complex . 12

Magnitude Functions for complex . 13

Conversion Functions for complex . 13

c_exception Class . 15

Constructor for c_exception . 15

Data Members of c_exception . 15

Errors Handled by the Complex Mathematics Library 16

Errors Not Handled by the Complex Mathematics Library 18

 Copyright IBM Corp. 1993, 1995 5

6 VisualAge C++ Open Class Library Reference

complex Class

complex Class

This chapter describes the member functions of the complex class, the class that

provides you with the facilities to manipulate complex numbers.

Derivation complex does not derive from any class.

Header File complex is declared in complex.h

Members The following members are provided for complex:

Method Page Method Page

Constructors 8 conj 13

operator + 9 cos 12

operator +=, -=, *=. /= 10 cosh 12

operator != 10 exp 11

operator * 9 imag 14

operator - (negation) 9 log 11

operator - (subtraction) 9 norm 13

operator / 10 polar 14

operator >> 11 pow 12

operator << 11 real 14

operator == 10 sin 13

abs 13 sinh 13

arg 13 sqrt 12

Constants Defined in complex.h

The following table lists the mathematical constants that the Complex Mathematics

Library defines (if they have not been previously defined):

Table 1 (Page 1 of 2). Constants Defined in complex.h

Constant Name Description

M_E The constant e

M_LOG2E The logarithm of e to the base of 2

M_LOG10E The logarithm of e to the base of 10

M_LN2 The natural logarithm of 2

M_LN10 The natural logarithm of 10

 Copyright IBM Corp. 1993, 1995 7

complex Constructors

Table 1 (Page 2 of 2). Constants Defined in complex.h

Constant Name Description

M_PI π

M_PI_2 π / 2

M_PI_4 π / 4

M_1_PI 1 / π

M_2_PI 2 / π

M_2_SQRTPI 2 divided by the square root of π

M_SQRT2 The square root of 2

M_SQRT1_2 The square root of 1 / 2

Constructors for complex

There are two versions of the complex constructor:

complex();
complex(double r, double i=0.0);

If you declare a complex object without specifying any values for the real or

imaginary part of the complex value, the constructor that takes no arguments is used

and the complex value is initialized to (0, 0). For example, the following declaration

gives the object comp the value (0, 0):

 complex comp;

If you give either one or two values in your declaration, the constructor that takes two

arguments is used. If you only give one value, the real part of the complex object is

initialized to that value, and the imaginary part is initialized to 0.

For example, the following declaration gives the object comp2 the value (3.14, 0):

 complex comp2(3.14);

If you give two values in the declaration, the real part of the complex object is

initialized to the first value and the imaginary part is initialized to the second value.

For example, the following declaration gives the object comp3 the value (3.14, 6.44):

complex comp3(3.14, 6.44);

There is no explicit complex destructor.

8 VisualAge C++ Open Class Library Reference

complex Mathematical Operators

Initializing

complex

Arrays

You can use the complex constructor to initialize arrays of complex numbers. If

the list of initial values is made up of complex values, each array element is

initialized to the corresponding value in the list of initial values. If the list of initial

values is not made up of complex values, the real parts of the array elements are

initialized to these initial values and the imaginary parts of the array elements are

initialized to 0. In the following example, the elements of array b are initialized to

the values in the initial value list, but only the real parts of elements of array a are

initialized to the values in the initial value list.

 #include <complex.h>

void main() {
complex a[3] = {1.0, 2.0, 3.0};
complex b[3] = {complex(1.0, 1.0), complex(2.0, 2.0),

 complex(3.0, 3.0)};
cout << "Here is the first element of a: " << a[0] << endl;
cout << "Here is the first element of b: " << b[0] << endl;

 }

This example produces the following output:

Here is the first element of a: (1, 0)
Here is the first element of b: (1, 1)

Mathematical Operators for complex

The complex operators described in this section have the same precedence as the

corresponding real operators.

Addition friend complex operator+(complex x, complex y);

The addition operator returns the sum of x and y.

Subtraction friend complex operator-(complex x, complex y);

The subtraction operator returns the difference between x and y.

Negation friend complex operator-(complex x);

The negation operator returns (- a, - b) when its argument is (a, b).

 Multiplication
friend complex operator*(complex x, complex y);

The multiplication operator returns the product of x and y.

 complex Class 9

complex Mathematical Operators

Division friend complex operator/(complex x, complex y);

The division operator returns the quotient of x divided by y.

Equality friend int operator==(complex x, complex y);

The equality operator “==” returns a nonzero value if x equals y. This operator tests

for equality by testing that the two real components are equal and that the two

imaginary components are equal.

Because both components are double values, the equality operator tests for an exact

match between the two sets of values. If you want an equality operator that can test

for an absolute difference within a certain tolerance between the two pairs of

corresponding components, you can use a function such as the isequal function

defined in “Equality and Inequality Operators Test for Absolute Equality” in the
Open Class Library User's Guide.

Inequality friend int operator!=(complex x, complex y);

The inequality operator “! =” returns a nonzero value if x does not equal y. This

operator tests for inequality by testing that the two real components are not equal and

that the two imaginary components are not equal.

Because both components are double values, the inequality operator returns false only

when both the real and imaginary components of the two values are identical. If you

want an inequality operator that can test for an absolute difference within a certain

tolerance between the two pairs of corresponding components, you can use a function

such as the is_not_equal function defined in “Equality and Inequality Operators

Test for Absolute Equality” in the Open Class Library User's Guide.

Mathematical

Assignment

Operators

void operator+=(complex x);
void operator-=(complex x);
void operator*=(complex x);
void operator/=(complex x);

The following list describes the functions of the mathematical assignment operators:

¹ x += y assigns the value of x + y to x.

¹ x -= y assigns the value of x - y to x.

¹ x *= y assigns the value of x * y to x.

¹ x /= y assigns the value of x / y to x.

10 VisualAge C++ Open Class Library Reference

complex Input and Output

Note: The assignment operators do not produce a value that can be used in an

expression. The following code, for example, produces a compile-time error:

complex x, y, z; // valid declaration
x = (y += z); // invalid assignment causes a

// compile-time error
y += z; // correct method involves splitting
x = y; // expression into separate statements

Input and Output Operators for complex

Input

Operator

istream& operator>>(istream& is, complex& c);

The input (or extraction) operator >> takes complex value c from the stream is in the

form (a,b). The parentheses and comma are mandatory delimiters for input when the

imaginary part of the complex number being read is nonzero. Otherwise, they are

optional. In both cases, white space is optional.

Output

Operator

ostream& operator<<(ostream& os, complex c);

The output (or insertion) operator << writes complex value c to the stream os in the

form (a,b).

Mathematical Functions for complex

exp friend complex exp(complex x);

exp() returns the complex value equal to ex where x is the argument. Table 2 on

page 17 shows the values returned by the default error-handling procedure for exp().

log friend complex log(complex x);

log() returns the natural logarithm of the argument x. Table 2 on page 17 shows

the values returned by the default error-handling procedure for log().

 complex Class 11

complex Trigonometric Functions

pow friend complex pow(double d, complex z);
friend complex pow(complex c, int i);
friend complex pow(complex c, double d);
friend complex pow(complex c, complex z);

pow() returns the complex value xy, where x is the first argument and y is the second

argument. pow() is overloaded four times. If d is a double value, i is an integer

value, and c and z are complex values, then pow() can produce any of the following

results:

 ¹ dz

 ¹ ci

 ¹ cd

 ¹ cz

sqrt friend complex sqrt(complex x);

sqrt() returns the square root of its argument. If c and d are real values, then every

complex number (a,b), where:

 ¹ a = c² - d²

 ¹ b = 2cd

has two square roots:

 ¹ (c,d)

 ¹ (-c,-d)

sqrt() returns the square root that has a positive real part, that is, the square root that

is contained in the first or fourth quadrants of the complex plane.

Trigonometric Functions for complex

cos friend complex cos(complex x);

cos() returns the cosine of x.

cosh friend complex cosh(complex x);

cosh() returns the hyperbolic cosine of x. Table 2 on page 17 shows the values

returned by the default error-handling procedure for cosh().

12 VisualAge C++ Open Class Library Reference

complex Magnitude Functions

sin friend complex sin(complex x);

sin() returns the sine of x.

sinh friend complex sinh(complex x);

sinh() returns the hyperbolic sine of x. Table 2 on page 17 shows the values

returned by the default error-handling procedure for sinh().

Magnitude Functions for complex

abs friend double abs(complex x);

abs() returns the absolute value or magnitude of its argument. The absolute value of

a complex value (a,b) is the positive square root of a²+b².

norm friend double norm(complex x);

norm() returns the square of the magnitude of its argument. If the argument x is

equal to the complex number (a,b), norm() returns the value a²+b². norm() is faster

than abs(), but it is more likely to cause overflow errors.

Conversion Functions for complex

You can use the conversion functions in the Complex Mathematics Library to convert

between the polar and standard complex representations of a value and to extract the

real and imaginary parts of a complex value.

arg friend double arg(complex x);

arg() returns the angle (in radians) of the polar representation of its argument. If the

argument x is equal to the complex number (a,b), the angle returned is the angle in

radians on the complex plane between the real axis and the vector (a,b). The return

value has a range of -π to π. See Figure 4 in the Open Class Library User's

Guide for an illustration of the polar representation of complex numbers.

conj friend complex conj(complex x);

conj() returns the complex value equal to (a,-b) if the input argument x is equal to

(a,b).

 complex Class 13

complex Conversion Functions

polar friend complex polar(double a, double b= 0);

polar() returns the standard complex representation of the complex number that has a

polar representation (a,b).

real friend double real(const complex& x);

real() extracts the real part of the complex number x.

imag friend double imag(const complex& x);

imag() extracts the imaginary part of the complex number x.

14 VisualAge C++ Open Class Library Reference

c_exception Class

c_exception Class

Use the c_exception class to handle errors that are created by the functions and

operations in the complex class.

Note: The c_exception class is not related to the C++ exception handling

mechanism that uses the try, catch, and throw statements.

Derivation c_exception is not derived from any other class.

Header File c_exception is declared in complex.h.

Members The following members are provided for c_exception:

Member Page Member Page

Constructor 15 name 15

arg1 15 retval 16

arg2 15 type 16

Constructor for c_exception

c_exception(char *n, const complex& a1,
const complex& a2 = complex_zero);

The c_exception constructor creates a c_exception object with name member equal

to n, arg1 member equal to a1, and arg2 member equal to a2.

Data Members of c_exception

arg1, arg2 complex arg1;
complex arg2;

arg1 and arg2 are the arguments with which the function that caused the error was

called.

name char *name;

name is a string that contains the name of the function where the error occurred.

 Copyright IBM Corp. 1993, 1995 15

Errors Handled by the Complex Library

retval complex retval;

retval is the value that the default definition if the error handling function

complex_error() returns. You can make your own definition of complex_error()

return a different value.

type int type;

type describes the type of error that has occurred. It can take the following values

that are defined in the complex.h header file:

¹ SING argument singularity

¹ OVERFLOW overflow range error

¹ UNDERFLOW underflow range error

Errors Handled by the Complex Mathematics Library

 complex_error
friend int complex_error(c_exception& ce);

complex_error() is invoked by member functions of the Complex Mathematics

Library when errors are detected. The argument ce refers to the c_exception object

that contains information about the error. You can define your own procedures for

handling errors by defining a function called complex_error() with return type int

and a single parameter of type c_exception&.

If you define your own complex_error() function and this function returns a nonzero

value, no error message will be generated and the external variable errno will not be

set. If this function returns zero, errno is given the value of one of the following

constants:

¹ ERANGE if the result is too large or too small

¹ EDOM if there is a domain error within a mathematical function

These constants are defined in errno.h.

If you define your own version of complex_error(), when you compile your program

you must use the /NOE option.

For example, if the source file containing your definition of complex_error() is

source1.cpp, then you would invoke the compiler like this:

icc source1.cpp /B"/NOE"

16 VisualAge C++ Open Class Library Reference

Errors Handled by the Complex Library

Default Error-Handling Procedures

If you do not define your own complex_error(), the default error-handling procedures

will be invoked when an error occurs. The results for a given input complex value

(a, b) depend on the kind of error and the sign of the cosine and sine of b. The

following table shows the return value of the default error-handling procedure and the

value given to errno for each function with input equal to the complex value (a, b).

Notes:

The following symbols appear in this table:

1. NA - not applicable. The result of the error depends on the sign of the cosine

and sine of b (the imaginary part of the argument) unless “NA” appears in the

Cosine b or Sine b columns.

2. HUGE - the maximum double value. This value is defined in math.h.

Table 2 (Page 1 of 2). Results of the Default Error-Handling Procedures

Function Error Cosine b Sine b Return Value errno

cosh a too large nonnegative nonnegative (+HUGE,+HUGE) ERANGE

cosh a too large nonnegative negative (+HUGE,-HUGE) ERANGE

cosh a too small nonnegative nonnegative (+HUGE,-HUGE) ERANGE

cosh a too small nonnegative negative (+HUGE,+HUGE) ERANGE

cosh a too small negative nonnegative (-HUGE,-HUGE) ERANGE

cosh a too small negative negative (-HUGE,+HUGE) ERANGE

cosh b too large negative nonnegative (-HUGE,+HUGE) ERANGE

cosh b too large negative negative (-HUGE,-HUGE) ERANGE

cosh b too small NA NA (0,0) ERANGE

exp a too large positive positive (+HUGE,+HUGE) ERANGE

exp a too large positive nonpositive (+HUGE,-HUGE) ERANGE

exp a too large nonpositive positive (-HUGE,+HUGE) ERANGE

exp a too large nonpositive nonpositive (-HUGE,-HUGE) ERANGE

exp a too small NA NA (0,0) ERANGE

exp b too large NA NA (0,0) ERANGE

exp b too small NA NA (0,0) ERANGE

log a too large positive positive (+HUGE,0) See note

sinh a too large nonnegative nonnegative (+HUGE,+HUGE) ERANGE

sinh a too large nonnegative negative (+HUGE,-HUGE) ERANGE

sinh a too large negative nonnegative (-HUGE,+HUGE) ERANGE

sinh a too large negative negative (-HUGE,-HUGE) ERANGE

sinh a too small nonnegative nonnegative (-HUGE,+HUGE) ERANGE

 c_exception Class 17

Errors Not Handled by the Complex Library

Note: errno is set to EDOM when the error for log() is detected. The message is

stored in DDE4.MSG. The message number in DDE4.MSG is 90. When this message is

displayed by the C/C++ Runtime Library, it is changed to 5090. For information on

binding this message, see “Binding Runtime Messages” in the IBM VisualAge�C++ for

OS/2 User's Guide and Reference.

Table 2 (Page 2 of 2). Results of the Default Error-Handling Procedures

Function Error Cosine b Sine b Return Value errno

sinh a too small nonnegative negative (-HUGE,-HUGE) ERANGE

sinh a too small negative nonnegative (+HUGE,+HUGE) ERANGE

sinh a too small negative negative (+HUGE,-HUGE) ERANGE

sinh b too large NA NA (0,0) ERANGE

sinh b too small NA NA (0,0) ERANGE

Errors Not Handled by the Complex Mathematics Library

There are some cases where member functions of the Complex Mathematics Library

call functions in the math library. These calls can cause underflow and overflow

conditions that are handled by the matherr() function that is declared in the math.h

header file. For example, the overflow conditions that are caused by the following

calls are handled by matherr():

 ¹ exp(complex(DBL_MAX, DBL_MAX))

¹ pow(complex(DBL_MAX, DBL_MAX), INT_MAX)

 ¹ norm(complex(DBL_MAX, DBL_MAX))

DBL_MAX is the maximum valid double value. INT_MAX is the maximum int value.

Both these constants are defined in float.h.

If you do not want the default error-handling defined by matherr(), you should define

your own version of matherr().

18 VisualAge C++ Open Class Library Reference

Part 2. I/O Stream Library

filebuf Class . 21

Public Members of filebuf . 22

fstream, ifstream, and ofstream Classes . 25

Public Members of fstreambase . 25

Public Members of fstream . 26

Public Members of ifstream . 28

Public Members of ofstream . 29

ios Class . 31

Constructors and Assignment Operator for ios 32

Format State Variables . 32

Format State Flags . 33

Public Members of ios for the Format State . 36

Public Members of ios for User-Defined Format Flags 39

Public Members of ios for the Error State . 40

Other Members of ios . 42

Built-In Manipulators for ios . 44

iostream and iostream_withassign Classes . 45

Public Members of iostream and iostream_withassign 45

istream and istream_withassign Classes . 47

Constructors for istream . 47

Input Prefix Function . 48

Public Members of istream for Formatted Input 48

Public Members of istream for Unformatted Input 52

Public Members of istream for Positioning . 54

Other Public Members of istream . 54

Built-In Manipulators for istream . 55

Public Members of istream_withassign . 56

Manipulators . 57

Parameterized Manipulators for the Format State 57

ostream and ostream_withassign Classes . 61

Constructors for ostream . 61

Output Prefix and Suffix Functions . 62

Public Members of ostream for Formatted Output 62

 Copyright IBM Corp. 1993, 1995 19

Public Members of ostream for Unformatted Output 66

Public Members of ostream for Positioning . 66

Other Public Members of ostream . 67

Built-In Manipulators for ostream . 67

Public Members of ostream_withassign . 68

stdiobuf and stdiostream Classes . 69

Public Members of stdiobuf . 69

Public Members of stdiostream . 70

streambuf Class . 73

streambuf Public and Protected Interfaces . 73

Public Members of the streambuf Public Interface 75

Protected Functions That Return Pointers . 77

Protected Functions That Set Pointers . 79

Other Nonvirtual Protected Member Functions 80

Protected Virtual Member Functions . 82

strstream, istrstream, and ostrstream Classes 87

Public Members of strstreambase . 87

Public Members of strstream . 88

Public Members of istrstream . 89

Public Members of ostrstream . 90

strstreambuf Class . 91

Public Members of strstreambuf . 91

20 VisualAge C++ Open Class Library Reference

filebuf Class

filebuf Class

This chapter describes the filebuf class, the class that specializes streambuf for

using files as the ultimate producer or the ultimate consumer.

In a filebuf object, characters are cleared out of the put area by doing write

operations to the file, and characters are put into the get area by doing read operations

from that file. The filebuf class supports seek operations on files that allow seek

operations. A filebuf object that is attached to a file descriptor is said to be open.

The stream buffer is allocated automatically if one is not specified explicitly with a

constructor or a call to setbuf(). You can also create an unbuffered filebuf object

by calling the constructor or setbuf() with the appropriate arguments. If the filebuf

objec is unbuffered, a system call is made for each character that is read or written.

The get and put pointers for a filebuf object behave as a single pointer. This single

pointer is referred to as the get/put pointer. The file that is attached to the filebuf
object also has a single pointer that indicates the current position where information is

being read or written. In this chapter, this pointer is called the file get/put pointer.

Derivation streambuf

 filebuf

Header File filebuf is declared in fstream.h.

Members The following members are provided for filebuf:

Method Page Method Page

filebuf constructor 22 is_open 23

filebuf destructor 22 open 23

attach 22 seekoff 23

close 22 seekpos 24

detach 22 setbuf 24

fd 23 sync 24

For an example of using the filebuf class, see “Using filebuf Functions to Move

Through a File” in the Open Class Library User's Guide.

 Copyright IBM Corp. 1993, 1995 21

filebuf Public Members

Public Members of filebuf

Note: The following descriptions assume that the functions are called as part of a

filebuf object called fb.

Constructors for filebuf
filebuf();
filebuf(int d);
filebuf(int d, char* p, int len);

The filebuf() constructor with no arguments constructs an initially closed filebuf
object.

The filebuf() constructor with one argument constructs a filebuf object that is

attached to file descriptor d.

The filebuf() constructor with three arguments constructs a filebuf object that is

attached to file descriptor d. The object is initialized to use the stream buffer starting

at the position pointed to by p with length equal to len.

Destructor for filebuf
˜filebuf();

The filebuf destructor calls fb.close().

attach filebuf* attach(int d);

attach() attaches fb to the file descriptor d. fb is the filebuf object returned by

attach(). If fb is already open or if d is not open, attach() returns NULL.

Otherwise, attach() returns a pointer to fb.

detach int detach();

fb.detach() disconnects fb from the file without closing the file. If fb is not open,

detach() returns -1. Otherwise, detach() flushes any output that is waiting in fb to

be sent to the file, disconnects fb from the file, and returns the file descriptor.

close filebuf* close();

close() does the following:

1. Flushes any output that is waiting in fb to be sent to the file

2. Disconnects fb from the file

3. Closes the file that was attached to fb

22 VisualAge C++ Open Class Library Reference

filebuf Public Members

If an error occurs, close() returns 0. Otherwise, close() returns a pointer to fb.

Even if an error occurs, close() performs the second and third steps listed above.

fd int fd();

fd() returns the file descriptor that is attached to fb. If fb is closed, fd() returns

EOF.

is_open int is_open();

is_open() returns a nonzero value if fb is attached to a file descriptor. Otherwise,

is_open() returns zero.

open filebuf* open(const char* fname, int omode, int prot=openprot);

open() opens the file with the name fname and attaches fb to it. If fname does not

already exist and omode does not equal ios::nocreate, open() tries to create it with

protection mode equal to prot. The default value of prot is filebuf::openprot. An

error occurs if fb is already open. If an error occurs, open() returns 0. Otherwise,

open() returns a pointer to fb.

The default protection mode for the filebuf class is S_IREAD | S_IWRITE. If you

create a file with both S_IREAD and S_IWRITE set, the file is created with both read and

write permission. If you create a file with only S_IREAD set, the file is created with

read-only permission, and cannot be deleted later with the stdio.h library function

remove(). S_IREAD and S_IWRITE are defined in sys\stat.h.

seekoff streampos seekoff(streamoff so, seek_dir sd, int omode);

seekoff() moves the file get/put pointer to the position specified by sd with the

offset so. sd can have the following values:

¹ ios::beg: the beginning of the file

¹ ios::cur: the current position of the file get/put pointer

¹ ios::end: the end of the file

seekoff() changes the position of the file get/put pointer to the position specified by

the value sd + so. The offset so can be either positive or negative. seekoff()

ignores the value of omode.

If fb is attached to a file that does not support seeking, or if the value sd + so

specifies a position before the beginning of the file, seekoff() returns EOF and the

 filebuf Class 23

filebuf Public Members

position of the file get/put pointer is undefined. Otherwise, seekoff() returns the new

position of the file get/put pointer.

seekpos The filebuf class inherits the default definition of seekpos() from the streambuf
class. The default definition defines seekpos() as a call to seekoff(). Thus, the

following call to seekpos():

seekpos(pos, mode);

is converted to a call to seekoff():

seekoff(streamoff(pos), ios::beg, mode);

setbuf streambuf* setbuf(char* pbegin, int len);

setbuf() sets up a stream buffer with length in bytes equal to len, beginning at the

position pointed to by pbegin. setbuf() does the following:

¹ If pbegin is 0 or len is nonpositive, setbuf() makes fb unbuffered.

¹ If fb is open and a stream buffer has been allocated, no changes are made to this

stream buffer, and setbuf() returns NULL.

¹ If neither of these cases is true, setbuf() returns a pointer to fb.

sync int sync();

sync() attempts to synchronize the get/put pointer and the file get/put pointer.

sync() may cause bytes that are waiting in the stream buffer to be written to the file,

or it may reposition the file get/put pointer if characters that have been read from the

file are waiting in the stream buffer. If it is not possible to synchronize the get/put

pointer and the file get/put pointer, sync() returns EOF. If they can be synchronized,

sync() returns zero.

24 VisualAge C++ Open Class Library Reference

fstreambase

fstream, ifstream,

and ofstream Classes

The fstream, ifstream, and ofstream classes specialize istream, ostream, and

iostream for use with files.

Derivation ios

 istream

 ifstream

 ostream

 ofstream

istream and ostream

 iostream

 fstream

Header File fstream, ifstream, and ofstream are declared in fstream.h.

Members The following members are provided for fstream, ifstream, ofstream, and

fstreambase:

Method Page Method Page

fstreambase: ifstream:

attach 26 constructor 28

close 26 open 29

detach 26 rdbuf 29

setbuf 26 ofstream:

fstream: constructor 29

constructor 26 open 30

open 27 rdbuf 30

rdbuf 28

Public Members of fstreambase

Notes:

1. The fstreambase class is an internal class that provides common functions for

the classes that are derived from it. Do not use the fstreambase class directly.

The following descriptions are provided so that you can use the functions as part

of fstream, ifstream, and ofstream objects.

2. The following descriptions assume that the functions are called as part of an

fstream, ifstream, or ofstream object called fb.

 Copyright IBM Corp. 1993, 1995 25

fstream

attach void attach(int filedesc);

attach() attaches fb to the file descriptor filedesc. If fb is already attached to a

file descriptor, an error occurs and ios::failbit is set in the format state of fb.

close void close();

close() closes the filebuf object, breaking the connection between fb and the file

descriptor. close() calls fb.rdbuf()->close(). If this call fails, the error state of fb

is not cleared.

detach int detach();

detach detaches the filebuf object by calling fb.rdbuf()->detach(), and returns the

value returned by fb.rdbuf()->detach().

setbuf void setbuf(char* pbegin, int len);

setbuf() sets up a stream buffer with length in bytes equal to len beginning at the

position pointed to by pbegin. If pbegin is equal to 0 or len is nonpositive, fb will

be unbuffered. If fb is open, or the call to fb.rdbuf()->setbuf() fails, setbuf() sets

ios::failbit in the object's state.

Public Members of fstream

Note: The following descriptions assume that the functions are called as part of an

fstream object called fs.

Constructors for fstream
fstream();

This version of the fstream constructor takes no arguments and constructs an

unopened fstream object.

fstream(int filedesc);

This version takes one argument and constructs an fstream object that is attached to

the file descriptor filedesc. If filedesc is not open, ios::failbit is set in the

format state of fs.

fstream(const char* fname, int mode, int prot=filebuf::openprot);

This version constructs an fstream object and opens the file fname with open mode

equal to mode and protection mode equal to prot. The default value for the argument

26 VisualAge C++ Open Class Library Reference

fstream

prot is filebuf::openprot. If the file cannot be opened, the error state of the

constructed fstream object is set.

fstream(int filedesc, char* bufpos, int len);

This version constructs an fstream object that is attached to the file descriptor

filedesc. If filedesc is not open, ios::failbit is set in the format state of fs.

This constructor also sets up an associated filebuf object with a stream buffer that

has length len bytes and begins at the position pointed to by bufpos. If bufpos is

equal to 0 or len is equal to 0, the associated filebuf object is unbuffered.

open void open(const char* fname, int mode, int prot=filebuf::openprot);

open() opens the file with the name fname and attaches it to fs. If fname does not

already exist, open() tries to create it with protection mode equal to prot, unless

ios::nocreate is set.

The default value for prot is filebuf::openprot. If fs is already attached to a file or

if the call to fs.rdbuf()->open() fails, ios::failbit is set in the error state for fs.

The members of the ios::open_mode enumeration are bits that can be ORed together.

The value of mode is the result of such an OR operation. This result is an int value,

and for this reason, mode has type int rather than open_mode.

The elements of the open_mode enumeration have the following meanings:

ios::app open() performs a seek to the end of the file. Data that is written

is appended to the end of the file. This value implies that the file

is open for output.

ios::ate open() performs a seek to the end of the file. Setting ios::ate

does not open the file for input or output. If you set ios::ate, you

should explicitly set ios::in, ios::out, or both.

ios::bin See ios::binary below.

ios::binary The file is opened in binary mode. In the default (text) mode,

carriage returns are discarded on input, as is an end-of-file (0x1a)

character if it is the last character in the file. This means that a

carriage return without an accompanying line feed causes the

characters on either side of the carriage return to become adjacent.

On output, a line feed is expanded to a carriage return and line

feed. If you specify ios::binary, carriage returns and terminating

end-of-file characters are not removed on input, and a line feed is

not expanded to a carriage return and line feed on output.

ios::binary and ios::bin provide identical functionality.

 fstream, ifstream, and ofstream Classes 27

ifstream

ios::in The file is opened for input. If the file that is being opened for

input does not exist, the open operation will fail. ios::noreplace

is ignored if ios::in is set.

ios::out The file is opened for output.

ios::trunc If the file already exists, its contents will be discarded. If you

specify ios::out and neither ios::ate nor ios::app, you are

implicitly specifying ios::trunc. If you set ios::trunc, you should

explicitly set ios::in, ios::out, or both.

ios::nocreate If the file does not exist, the call to open() fails.

ios::noreplace If the file already exists and ios::out is set, the call to open() fails.

If ios::out is not set, ios::noreplace is ignored.

rdbuf filebuf* rdbuf();

rdbuf() returns a pointer to the filebuf object that is attached to fs.

Public Members of ifstream

For an example of using the ifstream class, see “Opening a File for Input and

Reading from the File” in the Open Class Library User's Guide.

Note: The following descriptions assume that the functions are called as part of an

ifstream object called ifs.

Constructors for ifstream
ifstream();

This version of the ifstream constructor takes no arguments and constructs an

unopened ifstream object.

ifstream(int filedesc);

This version takes one argument and constructs an ifstream object that is attached to

the file descriptor filedesc. If filedesc is not open, ios::failbit is set in the

format state of ifs.

ifstream(const char* fname,
 int mode=ios::in,
 int prot=filebuf::openprot);

The third version constructs an ifstream object and opens the file fname with open

mode equal to mode and protection mode equal to prot. The default value for mode

is ios::in, and the default value for prot is filebuf::openprot. If the file cannot be

opened, the error state of the constructed ifstream object is set.

28 VisualAge C++ Open Class Library Reference

ofstream

ifstream(int filedesc, char* bufpos, int len);

This version constructs an ifstream object that is attached to the file descriptor

filedesc. If filedesc is not open, ios::failbit is set in the format state of ifs.

This constructor also sets up an associated filebuf object with a stream buffer that

has length len bytes and begins at the position pointed to by bufpos. If bufpos is

equal to 0 or len is equal to 0, the associated filebuf object is unbuffered.

open void open(const char* fname,
 int mode=ios::in,
 int prot=filebuf::openprot);

open() opens the file with the name fname and attaches it to ifs. If fname does not

already exist, open() tries to create it with protection mode equal to prot, unless

ios::nocreate is set in mode.

The default value for mode is ios::in. The default value for prot is

filebuf::openprot. If ifs is already attached to a file, or if the call to

ifs.rdbuf()->open() fails, ios::failbit is set in the error status for ifs.

The members of the ios::open_mode enumeration are bits that can be ORed together.

The value of mode is the result of such an OR operation. This result is an int value,

and for this reason mode has type int rather than type open_mode. See “open” on

page 27 for a list of the possible values for mode.

rdbuf filebuf* rdbuf();

rdbuf() returns a pointer to the filebuf object that is attached to ifs.

Public Members of ofstream

For an example of using the ofstream class, see “Opening a File for Output and

Writing to the File” in the Open Class Library User's Guide.

Note: The following descriptions assume that the functions are called as part of an

ofstream object called ofs.

Constructors for ofstream
ofstream();

This version of the ofstream constructor takes no arguments and constructs an

unopened ofstream object.

ofstream(int filedesc);

 fstream, ifstream, and ofstream Classes 29

ofstream

This version takes one argument and constructs an ofstream object that is attached to

the file descriptor filedesc. If filedesc is not open, ios::failbit is set in the

format state of ofs.

ofstream(const char* fname,
 int mode=ios::out,
 int prot=filebuf::openprot);

This version constructs an ofstream object and opens the file fname with open mode

equal to mode and protection mode equal to prot. The default value for mode is

ios::out, and the default value for prot is filebuf::openprot. If the file cannot be

opened, the error state of the constructed ofstream object is set.

ofstream(int filedesc, char* bufpos, int len);

This version constructs an ofstream object that is attached to the file descriptor

filedesc. If filedesc is not open, ios::failbit is set in the format state of ofs.

This constructor also sets up an associated filebuf object with a stream buffer that

has length len bytes and begins at the position pointed to by bufpos. If p is equal

to 0 or len is equal to 0, the associated filebuf object is unbuffered.

open void open(const char* fname, int mode, int prot=filebuf::openprot);

open() opens the file with the name fname and attaches it to ofs. If fname does not

already exist, open() tries to create it with protection mode equal to prot, unless

ios::nocreate is set.

The default value for mode is ios::out. The default value for the argument prot is

filebuf::openprot. If ofs is already attached to a file, or if the call to the function

ofs.rdbuf()->open() fails, ios::failbit is set in the error state for ofs.

The members of the ios::open_mode enumeration are bits that can be ORed together.

The value of mode is the result of such an OR operation. This result is an int value,

and for this reason, mode has type int rather than open_mode. See “open” on
page 27 for a list of the possible values for mode.

rdbuf filebuf* rdbuf();

rdbuf() returns a pointer to the filebuf object that is attached to ofs.

30 VisualAge C++ Open Class Library Reference

ios Class

The ios class maintains the error and format state information for the classes that are

derived from it. The derived classes support the movement of formatted and

unformatted data to and from the stream buffer. This chapter describes the members

of the ios class, and thus describes the operations that are common to all the classes

that are derived from ios.

Derivation ios

Header File ios is declared in iostream.h.

Members The following members are provided for ios. Italicized members are flags or

variables used to maintain the format state information for streams.

Method Page Method Page

ios constructor 32 precision 37

bad 40 pword 39

bitalloc 39 rdbuf 42

clear 40 rdstate 41

dec 34 right 34

dec manipulator 44 scientific 35

endl manipulator 44 setf 37

ends manipulator 44 showbase 34

eof 40 showpoint 35

fail 41 showpos 34

fill 36 skip 38

fixed 35 skipws 33

flags 37 stdio 36

flush manipulator 44 sync_with_stdio 42

good 41 tie 43

hex 34 unitbuf 36

hex manipulator 44 unsetf 38

internal 34 uppercase 35

iword 39 width 38

left 34 ws manipulator 44

oct 34 x_fill 32

oct manipulator 44 x_precision 33

operator void* 41 x_width 33

operator= 32 xalloc 39

 Copyright IBM Corp. 1993, 1995 31

ios Constructors and Operators

Constructors and Assignment Operator for ios

public:
 ios(streambuf* sb);
protected:
 ios();
 init(streambuf* isb);
private:
 ios(ios& ioa);

void operator=(ios& iob);

There are three versions of the ios constructor. The version that is declared public

takes a single argument that is a pointer to the streambuf object that becomes

associated with the constructed ios object. If this pointer is equal to 0, the result is

undefined.

The version of the ios constructor that is declared protected takes no arguments.

This version is needed because ios is used as a virtual base class for iostream, and

therefore the ios class must have a constructor that takes no arguments. If you use

this constructor in a derived class, you must use the init() function to associate the

constructed ios object with the streambuf object pointed to by the argument isb.

Copying of ios objects is not well defined, and for this reason, both the assignment

operator and the copy constructor are declared private. Assignment between streams

is supported by the istream_withassign, ostream_withassign, and

iostream_withassign classes. See “Assignment Operator for

istream_withassign” on page 56 and “Assignment Operator for ostream_withassign”

on page 68 for more details. Except for the ..._withassign classes, none of the

predefined classes derived from ios has a copy constructor or an assignment operator.

Unless you define your own copy constructor or assignment operator for a class that

you derive from ios, your class will have neither a copy constructor nor an

assignment operator.

Format State Variables

The format state is a collection of format flags and format variables that control the

details of formatting for input and output operations. This section describes the

format variables.

x_fill char x_fill;

x_fill is the character that is used to pad values that do not require the width of an

entire field for their representation. Its default value is a space character.

32 VisualAge C++ Open Class Library Reference

Format State Flags

x_precision short x_precision;

x_precision is the number of significant digits in the representation of floating-point

values. Its default value is 6.

x_width short x_width;

x_width is the minimum width of a field. Its default value is 0.

Format State Flags

The following list shows the formatting features and the format flags that control

them:

¹ White space and padding: ios::skipws, ios::left, ios::right, ios::internal

¹ Base conversion: ios::dec, ios::hex, ios::oct, ios::showbase

 ¹ Integral formatting: ios::showpos

¹ Floating-point formatting: ios::fixed, ios::scientific, ios::showpoint

¹ Uppercase and lowercase: ios::uppercase

 ¹ Buffer flushing: ios::stdio, ios::unitbuf

“Mutually Exclusive Format Flags” on page 36 describes the flags that produce

unpredictable results if they are set at the same time.

White Space and Padding

The following format state flags control white space and padding characters. skipws

and right are set by default.

skipws If ios::skipws is set, white space will be skipped on input. If it is not set, white

space is not skipped. If ios::skipws is not set, the arithmetic extractors will signal an

error if you attempt to read an integer or floating-point value that is preceded by

white space. ios::failbit is set, and extraction ceases until it is cleared. This is

done to avoid looping problems. If the following program is run with an input file

that contains integer values separated by spaces, ios::failbit is set after the first

integer value is read, and the program halts. If the program did not call fail() at the

beginning of the while loop to test if ios::failbit is set, it would loop indefinitely.

 ios Class 33

Format State Flags

 #include <fstream.h>

 void main()
 {

fstream f("spadina.dat", ios::in);
 f.unsetf(ios::skipws);
 int i;

while (!f.eof() && !f.fail()) {
f >> i;
cout << i;

 }
 }

left If ios::left is set, the value is left-justified. Fill characters are added after the

value.

right If ios::right is set, the value is right-justified. Fill characters are added before the

value.

internal If ios::internal is set, the fill characters are added after any leading sign or base

notation, but before the value itself.

 Base Conversion

The manipulators ios::dec, ios::oct, and ios::hex (see “Built-In Manipulators

for ios” on page 44 for more details) have the same effect as the flags ios::dec,

ios::oct, and ios::hex, respectively. dec is set by default.

dec If ios::dec is set, the conversion base is 10.

oct If ios::oct is set, the conversion base is 8.

hex If ios::hex is set, the conversion base is 16.

showbase If ios::showbase is set, the operation that inserts values converts them to an external

form that can be read according to the C++ lexical conventions for integral constants.

By default, ios::showbase is unset.

 Integral Formatting

showpos If ios::showpos is set, the operation that inserts values places a positive sign “+”

into decimal conversions of positive integral values. By default, showpos is not set.

34 VisualAge C++ Open Class Library Reference

Format State Flags

 Floating-Point Formatting

The following format flags control the formatting of floating-point values:

showpoint If ios::showpoint is set, trailing zeros and a decimal point appear in the result of a

floating-point conversion. This flag has no effect if either ios::scientific or

ios::fixed is set. showpoint is not set by default.

scientific If ios::scientific is set, the value is converted using scientific notation. In

scientific notation, there is one digit before the decimal point and the number of digits

following the decimal point depends on the value of ios::x_precision. The default

value for ios::x_precision is 6. If ios::uppercase is set, an uppercase “E” precedes

the exponent. Otherwise, a lowercase “e” precedes the exponent. By default,

uppercase is not set. See “uppercase” for more information.

fixed If ios::fixed is set, floating-point values are converted to fixed notation with the

number of digits after the decimal point equal to the value of ios::x_precision (or 6

by default). ios::fixed is not set by default.

Default Representation of Floating-Point Values

If neither ios::fixed nor ios::scientific is set, the representation of floating-point

values depends on their values and the number of significant digits in the

representation equals ios::x_precision. Floating-point values are converted to

scientific notation if the exponent resulting from a conversion to scientific notation is

less than -4 or greater than or equal to the value of ios::x_precision. Otherwise,

floating-point values are converted to fixed notation. If ios::showpoint is not set,

trailing zeros are removed from the result and a decimal point appears only if it is

followed by a digit. ios::scientific and ios::fixed are collectively identified by

the static member ios::floatfield.

Uppercase and Lowercase

The following enumeration member determines whether alphabetic characters used in

floating-point numbers appear in upper- or lowercase:

uppercase If ios::uppercase is set, the operation that inserts values uses an uppercase “E” for

floating-point values in scientific notation. In addition, the operation that inserts

values stores hexadecimal digits “A” to “F” in uppercase and places an uppercase

“X” before hexadecimal values when ios::showbase is set. If ios::uppercase is not

set, a lowercase “e” introduces the exponent in floating-point values, hexadecimal

digits “a” to “f” are stored in lowercase, and a lowercase “x” is inserted before

hexadecimal values when ios::showbase is set.

The setting of uppercase also determines whether special numbers such as inf or

infinity are inserted in uppercase.

 ios Class 35

Format State Members

 Buffer Flushing

The following enumeration members affect buffer flushing behavior:

unitbuf If ios::unitbuf is set, ostream::osfx() performs a flush after each insertion. The

attached stream buffer is unit buffered. ios::unitbuf is not set by default.

stdio This flag is used internally by sync_with_stdio(). Do not use ios::stdio directly.

If you want to combine I/O Stream Library input and output with stdio.h input and

output, use sync_with_stdio(). See “sync_with_stdio” on page 42 for more

details on sync_with_stdio(). ios::stdio is not set by default.

Mutually Exclusive Format Flags

If you specify conflicting flags, the results are unpredictable. For example, the results

will be unpredictable if you set both ios::left and ios::right in the format state of

iosobj. Set only one flag in each set of the following three sets:

¹ ios::left, ios::right, ios::internal

¹ ios::dec, ios::oct, ios::hex

 ¹ ios::scientific, ios::fixed

Public Members of ios for the Format State

You can use the member functions listed below to control the format state of an ios
object.

Note: The following descriptions assume that the functions are called as part of an

ios object called iosobj.

fill char fill() const;
char fill(char fillchar);

fill() with no arguments returns the value of ios::x_fill in the format state of

iosobj. fill() with an argument fillchar sets ios::x_fill to be equal to

fillchar. It returns the value of ios::x_fill.

ios::x_fill is the character used as padding if the field is wider than the

representation of a value. The default value for ios::x_fill is a space. The

ios::left, ios::right, and ios::internal flags determine the position of the fill

character. See “White Space and Padding” on page 33 for more details.

You can also use the parameterized manipulator setfill to set the value of

ios::x_fill. See “setfill” on page 58 for a description of this parameterized

manipulator.

36 VisualAge C++ Open Class Library Reference

Format State Members

flags long flags() const;
long flags(long flagset);

flags() with no arguments returns the value of the flags that make up the current

format state. flags() with one argument sets the flags in the format state to the

settings specified in flagset and returns the value of the previous settings of the

format flags.

precision int precision() const;
int precision(int prec);

precision() with no arguments returns the value of ios::x_precision. precision()

with one argument sets the value of ios::x_precision to prec and returns the

previous value. The value of prec must be greater than 0. If the value is

nonpositive, the value of ios::x_precision is set to the default value, 6.

ios::x_precision controls the number of significant digits when floating-point values

are inserted.

The format state in effect when precision() is called affects the behavior of

precision(). If neither ios::scientific nor ios::fixed is set, ios::x_precision

specifies the number of significant digits in the floating-point value that is being

inserted. If, in addition, ios::showpoint is not set, all trailing zeros are removed and

a decimal point only appears if it is followed by digits.

If either ios::scientific or ios::fixed is set, ios::x_precision specifies the number

of digits following the decimal point.

You can also use the parameterized manipulator setprecision to set

ios::x_precision. See “setprecision” on page 59 for more details on this

parameterized manipulator.

setf long setf(long newset);
long setf(long newset, long field);

setf() with one argument is accumulative. It sets the format flags that are marked in

newset, without affecting flags that are not marked in newset, and returns the

previous value of the format state. You can also use the parameterized manipulator

setiosflags to set the format flags to a specific setting. See “setiosflags” on

page 59 for more details on this parameterized manipulator.

setf() with two arguments clears the format flags specified in field, sets the format

flags specified in newset, and returns the previous value of the format state. For

 ios Class 37

Format State Members

example, to change the conversion base in the format state to ios::hex, you could use

a statement like this:

s.setf(ios::hex, ios::basefield);

In this statement, ios::basefield specifies the conversion base as the format flag that

is going to be changed, and ios::hex specifies the new value for the conversion base.

If newset equals 0, all of the format flags specified in field are cleared. You can

also use the parameterized manipulator resetiosflags to clear format flags. See

“resetiosflags” on page 58 for more details on this parameterized manipulator.

Note: If you set conflicting flags the results are unpredictable. See “Mutually

Exclusive Format Flags” on page 36 for more details.

skip int skip(int i);

skip() sets the format flag ios::skipws if the value of the argument i does not equal

0. If i does equal 0, ios::skipws is cleared. skip() returns a value of 1 if

ios::skipws was set prior to the call to skip(), and returns 0 otherwise.

unsetf long unsetf(long oflags);

unsetf() turns off the format flags specified in oflags and returns the previous

format state.

width int width() const;
int width(int fwidth);

width() with no arguments returns the value of the current setting of the format state

field width variable, ios::x_width. If the value of ios::x_width is smaller than the

space needed for the representation of the value, the full value is still inserted.

width() with one argument, fwidth, sets ios::x_width to the value of fwidth and

returns the previous value. The default field width is 0. When the value of

ios::x_width is 0, the operations that insert values only insert the characters needed

to represent a value.

If the value of ios::x_width is greater than 0, the characters needed to represent the

value are inserted. Then fill characters are inserted, if necessary, so that the

representation of the value takes up the entire field. ios::x_width only specifies a

minimum width, not a maximum width. If the number of characters needed to

represent a value is greater than the field width, none of the characters is truncated.

After every insertion of a value of a numeric or string type (including char*, unsigned

char*, signed char*, and wchar_t*, but excluding char, unsigned char, signed char,

38 VisualAge C++ Open Class Library Reference

User-Defined Format Flags

and wchar_t), the value of ios::x_width is reset to 0. After every extraction of a

value of type char*, unsigned char*, signed char*, or wchar_t*, the value of

ios::x_width is reset to 0.

You can also use the parameterized manipulator setw to set the field width. See

“setw” on page 59 for more information on this parameterized manipulator. Also,

see “Public Members of ostream for Formatted Output” on page 62 for more

information on ios::x_width.

Public Members of ios for User-Defined Format Flags

In addition to the flags described in “Format State Flags” on page 33 , you can

also use the ios member functions listed in this section to define additional format

flags or variables in classes that you derive from ios.

bitalloc static long bitalloc();

bitalloc() is a static function that returns a long value with a previously unallocated

bit set. You can use this long value as an additional flag, and pass it as an argument

to the format state member functions. When all the bits are exhausted, bitalloc()

returns 0.

iword long& iword(int i);

iword() returns a reference to the ith user-defined flag, where i is an index returned

by xalloc(). iword() allocates space for the user-defined flag. If the allocation

fails, iword() sets ios::failbit.

pword void* & pword(int i);

pword() returns a reference to a pointer to the ith user-defined flag, where i is an

index returned by xalloc(). pword() allocates space for the user-defined flag. If the

allocation fails, pword() sets ios::failbit. pword() is the same as iword(), except

that the two functions return different types.

xalloc static int xalloc();

xalloc() is a static function that returns an unused index into an array of words

available for use as format state variables by classes derived from ios.

 ios Class 39

ios Error State

xalloc() simply returns a new index; it does not do any allocation. iword() and

pword() do the allocation, and if the allocation fails, they set ios::failbit. You

should check ios::failbit after calling iword() or pword().

Public Members of ios for the Error State

The error state is an enumeration that records the errors that take place in the

processing of ios objects. It has the following declaration:

enum io_state { goodbit, eofbit, failbit, badbit, hardfail };

The error state is manipulated using the ios member functions described in this

section.

Notes:

1. hardfail is a flag used internally by the I/O Stream Library. Do not use it.

2. The following descriptions assume that the functions are called as part of an ios
object called iosobj.

bad int bad() const;

bad() returns a nonzero value if ios::badbit is set in the error state of iosobj.

Otherwise, it returns 0. ios::badbit is usually set when some operation on the

streambuf object that is associated with the ios object has failed. It will probably not

be possible to continue input and output operations on the ios object.

clear void clear(int state=0);

clear() changes the error state of iosobj to state. If state equals 0 (its default),

all of the bits in the error state are cleared. If you want to set one of the bits without

clearing or setting the other bits in the error state, you can perform a bitwise OR

between the bit you want to set and the current error state. For example, the

following statement sets ios::badbit in iosobj and leaves all the other error state

bits unchanged:

 iosobj.clear(ios::badbit|iosobj.rdstate());

eof int eof() const;

eof() returns a nonzero value if ios::eofbit is set in the error state of iosobj.

Otherwise, it returns 0. ios::eofbit is usually set when an EOF has been encountered

during an extraction operation.

40 VisualAge C++ Open Class Library Reference

ios Error State

fail int fail() const;

fail() returns a nonzero value if either ios::badbit or ios::failbit is set in the

error state. Otherwise, it returns 0.

good int good() const;

good() returns a nonzero value if no bits are set in the error state of iosobj.

Otherwise, it returns 0.

rdstate int rdstate() const;

rdstate() returns the current value of the error state of iosobj.

operator

void*

operator void*();
operator const void*() const;

The void* operator converts iosobj to a pointer so that it can be compared to 0. The

conversion returns 0 if ios::failbit or ios::badbit is set in the error state of

iosobj. Otherwise, a pointer value is returned. This value is not meant to be

manipulated as a pointer; the purpose of the operator is to allow you to write

statements such as the following:

if (cin)
cout << "ios::badbit and ios::failbit are not set" << endl;

if (cin >> x)
cout << "ios::badbit and ios::failbit are not set "

<< x << " was input" << endl;

operator! int operator!() const;

The ! operator returns a nonzero value if ios::failbit or ios::badbit is set in the

error state of iosobj. You can use this operator to write statements like the

following:

 if (!cin)
cout << "either ios::failbit or ios::badbit is set" << endl;

 else
cout << "neither ios::failbit nor ios::badbit is set"

 << endl;

 ios Class 41

Other ios Members

Other Members of ios

This section describes the ios member functions that do not deal with the error state

or the format state. These descriptions assume that the functions are called as part of

an ios object called iosobj.

rdbuf streambuf* rdbuf();

rdbuf() returns a pointer to the streambuf object that is associated with iosobj. This

is the streambuf object that was passed as an argument to the ios constructor.

See “Constructors and Assignment Operator for ios” on page 32 for more details on

the ios constructor.

 sync_with_stdio
static void sync_with_stdio();

sync_with_stdio() is a static function that solves the problems that occur when you

call functions declared in stdio.h and I/O Stream Library functions in the same

program. The first time that you call sync_with_stdio(), it attaches stdiobuf objects

to the predefined streams cin, cout, and cerr. After that, input and output using these

predefined streams can be mixed with input and output using the corresponding FILE

objects (stdin, stdout, and stderr). This input and output are correctly synchronized.

If you switch between the I/O Stream Library formatted extraction functions and

stdio.h functions, you may find that a byte is “lost.” The reason is that the formatted

extraction functions for integers and floating-point values keep extracting characters

until a nondigit character is encountered. This nondigit character acts as a delimiter

for the value that preceded it. Because it is not part of the value, putback() is called

to return it to the stream buffer. If a C stdio library function, such as getchar(),

performs the next input operation, it will begin input at the character after this

nondigit character. Thus, this nondigit character is not part of the value extracted by

the formatted extraction function, and it is not the character extracted by the C stdio

library function. It is “lost.” Therefore, you should avoid switching between the I/O

Stream Library formatted extraction functions and C stdio library functions whenever

possible.

sync_with_stdio() makes cout and clog unit buffered. See “Buffer Flushing” on

page 36 for a definition of unit buffering. After you call sync_with_stdio(), the

performance of your program could diminish. The performance of your program

depends on the length of strings, with performance diminishing most when the strings

are shortest.

Note: You should use I/O Stream Library functions exclusively for all new code.

42 VisualAge C++ Open Class Library Reference

Other ios Members

tie ostream* tie();
ostream* tie(ostream* os);

There are two versions of tie(). The version that takes no arguments returns the

value of ios::x_tie, the tie variable. (The tie variable points to the ostream object

that is tied to the ios object.) The version that takes one argument os makes the tie

variable, ios::x_tie, equal to os and returns the previous value.

You can use ios::x_tie to automatically flush the stream buffer attached to an ios
object. If ios::x_tie for an ios object is not equal to 0 and the ios object needs

more characters or has characters to be consumed, the ostream object pointed to by

ios::x_tie is flushed.

By default, the tie variables of the predefined streams cin, cerr, and clog all point to

the predefined stream cout. The following example illustrates how these streams are

tied:

// Tying two streams together
 #include <iostream.h>
 #include <fstream.h>

void main() {
 float f;

cout << "Enter a number: "; // cin is tied to cout, so
cin >> f; // cout is flushed before input
cout << "The number was " << f << ".\n" << endl;

 ofstream myFile;
 myFile.open("testfile",ios::out);

cin.tie(&myFile); // now tie cin to a different ostream

cout << "Enter a number: "; // cout is not flushed by cin,
cin >> f; // so prompt appears after input.
cout << "The number was " << f << ".\n" << endl;

 }

Initially, the program displays a prompt, requests input, and then displays output.

After cin is tied to the ofstream myFile, however, the output is not flushed by the

request for input, so no prompt is displayed until after the input is received. The

output is flushed only by the endl manipulator at the end of the program. The

following shows sample output for this program:

Enter a number: 5
The number was 5.

6
Enter a number: The number was 6.

 ios Class 43

Built-In Manipulators

Built-In Manipulators for ios

The I/O Stream Library provides you with a set of built-in manipulators for ios and

the classes derived from it. These manipulators have a specific effect on a stream

other than inserting or extracting a value. Manipulators implicitly invoke functions

that modify the state of the stream, and they allow you to modify the state of a

stream at the same time as you are doing input and output. The syntax for

manipulators is consistent with the syntax for input and output.

The following is a list of the manipulators and the classes that they apply to:

dec istream and ostream
hex istream and ostream
oct istream and ostream
ws istream
endl ostream
ends ostream
flush ostream

 See “Built-In Manipulators for istream” on page 55 for more details on the

built-in manipulators for istream. See “Built-In Manipulators for ostream” on

page 67 for more details on the manipulators for ostream.

44 VisualAge C++ Open Class Library Reference

iostream and iostream_withassign Classes

iostream and

iostream_withassign Classes

The iostream class combines the input capabilities of the istream class with the

output capabilities of the ostream class. It is the base class for three other classes

that also provide both input and output capabilities:

¹ iostream_withassign, also described in this chapter, which you can use to assign

another stream (such as an fstream for a file) to an iostream object.

¹ strstream, which is a stream of characters stored in memory.

¹ fstream, which is a stream that supports input and output.

Derivation ios

 istream

 ostream

 iostream

 iostream_withassign

Header File iostream and iostream_withassign are declared in iostream.h.

Members The following members are provided for iostream and iostream_withassign:

Member Page

iostream Constructor 45

iostream_withassign Constructor 45

iostream_withassign Assignment Operator 46

Public Members of iostream and iostream_withassign

Constructor for iostream
iostream(streambuf* sb);

The iostream constructor takes a single argument sb. The constructor creates an

iostream object that is attached to the streambuf object that is pointed to by sb.

The constructor also initializes the format variables to their defaults. See “Format

State Variables” on page 32 for more details on the format variables.

Constructor for iostream_withassign
iostream_withassign();

The iostream_withassign constructor creates an iostream_withassign object. It

does not do any initialization of this object.

 Copyright IBM Corp. 1993, 1995 45

iostream and iostream_withassign Classes

Assignment Operator for iostream_withassign
iostream_withassign& operator=(ios& is);
iostream_withassign& operator=(streambuf* sb);

There are two versions of the iostream_withassign assignment operator. The first

version takes a reference to an ios object, is, as its argument. It associates the

stream buffer attached to is with the iostream_withassign object that is on the left

side of the assignment operator.

The second version of the iostream_withassign assignment operator takes a pointer

to a streambuf object, sb, as its argument. It associates this streambuf object with

the iostream_withassign object that is on the left side of the assignment operator.

46 VisualAge C++ Open Class Library Reference

istream and istream_withassign Classes

istream and

istream_withassign Classes

This chapter describes the istream class and its derived class istream_withassign.

You can use the istream member functions to take characters out of the stream buffer

that is associated with an istream object. istream_withassign is derived from

istream and includes an assignment operator.

Derivation ios

 istream

 istream_withassign

Header File istream and istream_withassign are declared in iostream.h.

Members The following members are provided for istream and istream_withassign:

Method Page Method Page

ipfx 48 tellg 54

istream Constructor 47 gcount 54

input operator 48 peek 55

get 52 putback 55

getline 53 sync 55

ignore 53 istream_withassign Constructor 56

read 54 istream_withassign operator= 56

seekg 54

Constructors for istream

Constructor for istream
istream(streambuf* sb);

The istream constructor takes a single argument sb. The constructor creates an

istream object that is attached to the streambuf object that is pointed to by sb. The

constructor also initializes the format variables to their defaults. See “Format

State Variables” on page 32 for details on the format variables.

The other istream constructor declarations in iostream.h are obsolete; do not use

them.

 Copyright IBM Corp. 1993, 1995 47

Input Prefix Function

Input Prefix Function

int ipfx(int need=0);

ipfx() checks the stream buffer attached to an istream object to determine if it is

capable of satisfying requests for characters. It returns a nonzero value if the stream

buffer is ready, and 0 if it is not.

The formatted input operator calls ipfx(0), while the unformatted input functions call

ipfx(1).

If the error state of the istream object is nonzero, ipfx() returns 0. Otherwise, the

stream buffer attached to the istream object is flushed if either of the following

conditions is true:

¹ need has a value of 0.

¹ The number of characters available in the stream buffer is fewer than the value of

need.

If ios::skipws is set in the format state of the istream object and need has a value of

0, leading white-space characters are extracted from the stream buffer and discarded.

If ios::hardfail is set or EOF is encountered, ipfx() returns 0. Otherwise, it returns

a nonzero value.

Public Members of istream for Formatted Input

You can use the istream class to perform formatted input from a stream buffer using

the input operator >>. Consider the following statement, where ins is a reference to

an istream object and x is a variable of a built-in type:

ins >> x;

The input operator >> calls ipfx(0). If ipfx() returns a nonzero value, the input

operator extracts characters from the streambuf object that is associated with ins. It

converts these characters to the type of x and stores the result in x. The input

operator sets ios::failbit if the characters extracted from the stream buffer cannot

be converted to the type of x. If the attempt to extract characters fails because EOF is

encountered, the input operator sets ios::eofbit and ios::failbit. If the attempt to

extract characters fails for another reason, the input operator sets ios::badbit. Even

if an error occurs, the input operator always returns ins.

The details of conversion depend on the format state (see “Format State Variables”

on page 32 for details) of the istream object and the type of the variable x. The

input operator may set the width variable ios::x_width to 0, but it does not change

anything else in the format state. See “Input Operator for Arrays of Characters”

on page 49 below for details.

48 VisualAge C++ Open Class Library Reference

Formatted Input

The input operator is defined for the following types:

¹ Arrays of character values (including signed char and unsigned char)

¹ Other integral values: short, int, long

¹ float, double, and long double values

In addition, the input operator is defined for streambuf objects.

You can also define input operators for your own types. For further details see

“Defining an Input Operator for a Class Type” in the Open Class Library User's

Guide.

The following sections describe the input operator for these types.

Note: The following descriptions assume that the input operator is called with the

istream object ins on the left side of the operator.

Input Operator for Arrays of Characters
istream& operator>>(char* pc);
istream& operator>>(signed char* pc);
istream& operator>>(unsigned char* pc);
istream& operator>>(wchar_t* pwc);

For pointers to char, signed char, and unsigned char, the input operator stores

characters from the stream buffer attached to ins in the array pointed to by pc. The

input operator stores characters until a white-space character is found. This

white-space character is left in the stream buffer, and the extraction stops. If

ios::x_width does not equal zero, a maximum of ios::x_width - 1 characters are

extracted. The input operator calls ins.width(0) to reset ios::x_width to 0.

For pointers to wchar_t, the input operator stores characters from the stream buffer

attached to ins in the array pointed to by pwc. The input operator stores characters

until a white-space character or a wchar_t blank is found. If the terminating character

is a white-space character, it is left in the stream buffer. If it is a wchar_t blank, it is

discarded to avoid returning two bytes to the input stream.

For wchar_t* arrays, if ios::width does not equal zero, a maximum of ios::width-1

characters (at 2 bytes each) are extracted. A 2-character space is reserved for the

wchar_t terminating null character.

Note: The input operators for these types also reset ios::x_width to 0. None of the

other input operators affects ios::x_width. All of the output operators except those

for the char types and wchar_t, on the other hand, reset ios::x_width to 0.

The input operator always stores a terminating null character in the array pointed to

by pc or pwc, even if an error occurs. For arrays of wchar_t*, this terminating null

character is a wchar_t terminating null character.

 istream and istream_withassign Classes 49

Formatted Input

Input Operator for char
istream& operator>>(char& rc);
istream& operator>>(signed char& rc);
istream& operator>>(unsigned char& rc);
istream& operator>>(wchar_t& rc);

For char, signed char, and unsigned char, the input operator extracts a character

from the stream buffer attached to ins and stores it in rc.

For references to wchar_t, the input operator extracts a wchar_t character from the

stream buffer and stores it in wc. If ios::skipws is set, the input operator skips

leading wchar_t spaces as well as leading char white spaces.

Input Operator for Other Integral Values
istream& operator>>(short& ir);
istream& operator>>(unsigned short& ir);
istream& operator>>(int& ir);
istream& operator>>(unsigned int& ir);
istream& operator>>(long& ir);
istream& operator>>(unsigned long& ir);

This section describes how the input operator works for references to the integral

types: short, unsigned short, int, unsigned int, long, and unsigned long. For these

integral types, the input operator extracts characters from the stream buffer associated

with ins and converts them according to the format state of ins. The converted

characters are then stored in ir. There is no overflow detection on conversion of

integral types.

The first character extracted from the stream buffer may be a sign (+ or -). The

subsequent characters are converted until a nondigit character is encountered. This

nondigit character is left in the stream buffer. Which characters are treated as digits

depends on the setting of the following format flags:

¹ ios::oct: the characters are converted to an octal value. Characters are

extracted from the stream buffer until a character that is not an octal digit (a digit

from 0 to 7) is encountered. If ios::oct is set and a signed value is encountered,

the value is converted into a decimal value. For example, if the characters “- 45”

are encountered in the input stream and ios::oct is set, the decimal value - 37 is

actually extracted.

¹ ios::dec: the characters are converted to a decimal value. Characters are

extracted from the stream buffer until a character that is not a decimal digit (a

digit from 0 to 9) is encountered.

¹ ios::hex: the characters are converted to a hexadecimal value. Characters are

extracted from the stream buffer until a character that is not a hexadecimal digit

(a digit from 0 to 9 or a letter from “A” to “F”, upper or lower case) is

50 VisualAge C++ Open Class Library Reference

Formatted Input

encountered. If ios::hex is set and a signed value is encountered, the value is

converted into a decimal value. For example, if the characters “-12” are

encountered in the input stream and ios::hex is set, the decimal value -18 is

actually extracted.

If none of these format flags is set, the characters are converted according to the C++
lexical conventions.

This conversion depends on the characters that follow the optional sign:

¹ If these characters are “0x” or “0X”, the subsequent characters are converted to a

hexadecimal value.

¹ If the first character is “0” and the second character is not “x” or “X”, the

subsequent characters are converted to an octal value.

¹ If neither of these cases is true, the characters are converted to a decimal value.

If no digits are available in the stream buffer (other than the “0” in “0X” or “0x”

preceding a hexadecimal value), the input operator sets ios::failbit in the error state

of ins.

Input Operator for float and double Values
istream& operator>>(float& ref);
istream& operator>>(double& ref);
istream& operator>>(long double& ref);

For float, double, and long double values, the input operator converts characters

from the stream buffer attached to ins according to the C++ lexical conventions.

The following conversions occur for certain string values:

¹ If the value consists of the character strings “inf” or “infinity” in any

combination of uppercase and lowercase letters, the string is converted to the

appropriate type's representation of infinity.

¹ If the value consists of the character string “nan” in any combination of

uppercase and lowercase letters, the string is converted to the appropriate type's

representation of a NaN.

The resulting value is stored in ref. The input operator sets ios::failbit if no digits

are available in the stream buffer or if the digits that are available do not begin a

floating-point number.

Input Operator for streambuf Objects
istream& operator>>(streambuf* sb);

For pointers to streambuf objects, the input operator calls ipfx(0). If ipfx(0) returns

a nonzero value, the input operator extracts characters from the stream buffer attached

 istream and istream_withassign Classes 51

Unformatted Input

to ins and inserts them in sb. Extraction stops when an EOF character is encountered.

The input operator always returns ins.

Public Members of istream for Unformatted Input

You can use the functions listed in this section to extract characters from a stream

buffer as a sequence of bytes. All of these functions call ipfx(1). They only

proceed with their processing if ipfx(1) returns a nonzero value. See “Input

Prefix Function” on page 48 for more details on ipfx().

Note: The following descriptions assume that the functions are called as part of an

istream object called ins.

get istream& get(char* ptr, int len, char delim='\n');
istream& get(signed char* ptr, int len, char delim='\n');
istream& get(unsigned char* ptr, int len, char delim='\n');

get() with three arguments extracts characters from the stream buffer attached to ins

and stores them in the byte array beginning at the location pointed to by ptr and

extending for len bytes. The default value of the delim argument is '\n'.

Extraction stops when either of the following conditions is true:

¹ delim or EOF is encountered before len-1 characters have been stored in the

array. delim is left in the stream buffer and not stored in the array.

¹ len-1 characters are extracted without delim or EOF being encountered.

get() always stores a terminating null character in the array, even if it does not

extract any characters from the stream buffer. get() sets the ios::failbit if it

encounters an EOF character before it stores any characters.

get istream& get(streambuf& sb, char delim='\n');

get() with two arguments extracts characters from the stream buffer attached to ins

and stores them in sb. The default value of the delim argument is “\n”. Extraction

stops when any of the following conditions is true:

¹ An EOF character is encountered.

¹ An attempt to store a character in sb fails. ios::failbit is set in the error state

of ins.

¹ delim is encountered. delim is left in the stream buffer attached to ins.

52 VisualAge C++ Open Class Library Reference

Unformatted Input

get istream& get(char& cref);
istream& get(signed char& cref);
istream& get(unsigned char& cref);
istream& get(wchar_t& cref);

get() with a single argument extracts a single character or wchar_t from the stream

buffer attached to ins and stores this character in cref.

get int get();

get() with no arguments extracts a character from the stream buffer attached to ins

and returns it. This version of get() returns EOF if EOF is extracted. ios::failbit is

never set.

getline istream& getline(char* ptr, int len, char delim='\n');
istream& getline(signed char* ptr, int len, char delim='\n');
istream& getline(unsigned char* ptr, int len, char delim='\n');

getline() extracts characters from the stream buffer attached to ins and stores them

in the byte array beginning at the location pointed to by ptr and extending for len

bytes. The default value of the delim argument is “\n”. Extraction stops when any

one of the following conditions is true:

¹ delim or EOF is encountered before len-1 characters have been stored in the

array. getline() extracts delim from the stream buffer, but it does not store

delim in the array.

¹ len-1 characters are extracted before delim or EOF is encountered.

getline() always stores a terminating null character in the array, even if it does not

extract any characters from the stream buffer. getline() sets the ios::failbit for

ins if it encounters an EOF character before it stores any characters.

getline() is like get() with three arguments, except that get() does not extract the

delim character from the stream buffer, while getline() does.

See “White Space in String Input” in the Open Class Library User's Guide for an

example of using the getline() function.

ignore istream& ignore(int num=1, int delim=EOF);

ignore() extracts up to num character from the stream buffer attached to ins and

discards them. ignore() will extract fewer than num characters if it encounters delim

or EOF.

 istream and istream_withassign Classes 53

Positioning

read istream& read(char* s, int n);
istream& read(signed char* s, int n);
istream& read(unsigned char* s, int n);

read() extracts n characters from the stream buffer attached to ins and stores them in

an array beginning at the position pointed to by s. If EOF is encountered before

read() extracts n characters, read() sets the ios::failbit in the error state of ins.

You can determine the number of characters that read() extracted by calling gcount()

immediately after the call to read().

Public Members of istream for Positioning

seekg istream& seekg(streampos sp);
istream& seekg(streamoff so, ios::seek_dir dir);

seekg() repositions the get pointer of the ultimate producer. seekg() with one

argument sets the get pointer to the position sp. seekg() with two arguments sets the

get pointer to the position specified by dir with the offset so. dir can have the

following values:

¹ ios::beg: the beginning of the stream

¹ ios::cur: the current position of the get pointer

¹ ios::end: the end of the stream

If you attempt to set the get pointer to a position that is not valid, seekg() sets

ios::badbit.

tellg streampos tellg();

tellg() returns the current position of the get pointer of the ultimate producer.

Other Public Members of istream

Note: The following descriptions assume that the functions are called as part of an

istream object called ins.

gcount int gcount();

gcount() returns the number of characters extracted from the stream buffer attached to

ins by the last call to an unformatted input function. (See “Public Members of

istream for Unformatted Input” on page 52 for more details.) The input operator >>

may call unformatted input functions, and thus formatted input may affect the value

54 VisualAge C++ Open Class Library Reference

Built-In Manipulators

returned by gcount(). See “Public Members of istream for Formatted Input” on

page 48 for more details on formatted input.

peek int peek();

peek() calls ipfx(1). If ipfx() returns zero, or if no more input is available from the

ultimate producer, peek() returns EOF. Otherwise, it returns the next character in the

stream buffer attached to ins without extracting the character.

putback istream& putback(char c);

putback() attempts to put a character that was extracted from the stream buffer

attached to ins back into the stream buffer. c must equal the character before the get

pointer of the stream buffer. Unless some other activity is modifying the stream

buffer, this is the last character extracted from the stream buffer. If c is not equal to

the character before the get pointer, the result of putback() is undefined, and the error

state of ins may be set. putback() does not call ipfx(), but if the error state of ins

is nonzero, putback() returns without putting back the character or setting the error

state. See “Input Prefix Function” on page 48 for more details on ipfx().

sync int sync();

sync() establishes consistency between the ultimate producer and the stream buffer

attached to ins. sync() calls ins.rdbuf()->sync(), which is a virtual function, so

the details of its operation depend on the way the function is defined in a given

derived class. If an error occurs, sync() returns EOF.

Built-In Manipulators for istream

istream& ws(istream&);
ios& dec(ios&);
ios& hex(ios&);
ios& oct(ios&);

The I/O Stream Library provides you with a set of built-in manipulators that can be

used with the istream class. These manipulators have a specific effect on an istream

object beyond extracting their own values. The built-in manipulators are accepted by

the following versions of the input operator:

istream& operator>> (istream& (*f) (istream&));
istream& operator>> (ios& (*f) (ios&));

If ins is a reference to an istream object, this statement extracts white-space

characters from the stream buffer attached to ins:

 istream and istream_withassign Classes 55

istream_withassign

ins >> ws;

This statement sets ios::dec:

ins >> dec;

This statement sets ios::hex:

ins >> hex;

This statement sets ios::oct:

ins >> oct;

Public Members of istream_withassign

Constructor for istream_withassign
istream_withassign();

The istream_withassign constructor creates an istream_withassign object. It does

not do any initialization of this object.

Assignment Operator for istream_withassign
istream_withassign& operator=(istream& is);
istream_withassign& operator=(streambuf* sb);

There are two versions of the istream_withassign assignment operator. The first

version takes a reference to an istream object, is, as its argument. It associates the

stream buffer attached to is with the istream_withassign object that is on the left

side of the assignment operator.

The second version of the assignment operator takes a pointer to a streambuf object,

sb, as its argument. It associates this streambuf object with the istream_withassign

object that is on the left side of the assignment operator.

56 VisualAge C++ Open Class Library Reference

Parameterized Manipulators for the Format State

Manipulators

This chapter describes the parameterized manipulators provided by the I/O Stream

Library and the facilities you can use to declare your own manipulators.

Derivation The manipulator classes are defined by a set of macros, and take names as defined

when you use the macros. See Chapter 6, “Manipulators” on page 69 in the
Open Class Library User's Guide for further information.

Header File The parameterized manipulator classes are declared in iomanip.h.

Members The following parameterized manipulators are described:

Manipulator Page Manipulator Page

resetiosflags 58 setiosflags 59

setbase 58 setprecision 59

setfill 58 setw 59

Parameterized Manipulators for the Format State

The iomanip.h header file also contains calls to the IOMANIPdeclare() macro for

types int and long. These calls create classes that are used to create the

parameterized manipulators that control the format state of ios objects. See

“Format State Flags” on page 33 for a description of the format state.

The call to IOMANIPdeclare(int) creates classes with names that are expanded from

the following macros:

 ¹ SMANIP(int)

 ¹ SAPP(int)

 ¹ IMANIP(int)

 ¹ IAPP(int)

 ¹ OMANIP(int)

 ¹ OAPP(int)

 ¹ IOMANIP(int)

 ¹ IOAPP(int)

All of these macros expand to names that include the string “int.” Similarly,

IOMANIPdeclare(long) creates eight classes whose names include the string “long.”

 Copyright IBM Corp. 1993, 1995 57

Parameterized Manipulators for the Format State

The following manipulators are declared using the classes created by the calls to

IOMANIPdeclare(int) and IOMANIPdeclare(long).

Note: All of the parameterized manipulators described below are defined for both

istream and ostream objects. In the following descriptions, is is a reference to an

istream object and os is a reference to an ostream object.

resetiosflags SMANIP(long) resetiosflags(long flags);

resetiosflags() clears the format flags specified in flags. It can appear in an input

stream:

is >> resetiosflags(flags);

In this case, resetiosflags() calls is.setf(0,flags). See “setf” on page 37 for

more details on setf().

resetiosflags() can also appear in an output stream:

os << resetiosflags(flags);

In this case, resetiosflags calls os.setf(0,flags).

setbase SMANIP(int) setbase(int base);

setbase() sets the conversion base to be equal to the value of the argument base. If

base equals 10, the conversion base is set to 10. If base equals 8, the conversion

base is set to 8. If base equals 16, the conversion base is set to 16. Otherwise, the

conversion base is set to 0. If the conversion base is 0, output is treated the same as

if the base were 10, but input is interpreted according to the C++ lexical conventions.

This means that input values that begin with “0” are interpreted as octal values, and

values that begin with “0x” or “0X” are interpreted as hexadecimal values.

setfill SMANIP(int) setfill(int fill);

setfill() sets the fill character, ios::x_fill, to fill. The fill character is the

character that appears in values that need to be padded to fill the field width.

setfill() can appear in either an input stream or an output stream:

is >> setfill(fill);
os << setfill(fill);

setfill() performs the same task as the function fill(). See “fill” on page 36

for more details on fill().

58 VisualAge C++ Open Class Library Reference

Parameterized Manipulators for the Format State

setiosflags SMANIP(long) setiosflags(long flags);

setiosflags() sets the format flags specified in flags. setiosflags() can appear in

an input stream:

is >> setiosflags(flags);

If it appears in an input stream, setiosflags() calls is.setf.(flags) See “setf”

on page 37 for more details on setf().

If it appears in an output stream, setiosflags() calls os.setf(flags):

os << setiosflags(flags);

setprecision SMANIP(int) setprecision(int prec);

setprecision() sets the precision format state variable, ios::x_prec, to the value of

prec. The value of prec must be greater than zero. If the value of prec is negative,

the precision format state variable is set to 6. See “precision” on page 37 for a

description of ios::x_prec.

setprecision() can appear in either an input stream or an output stream:

is >> setprecision(prec);
os << setprecision(prec);

setw SMANIP(int) setw(int width);

setw() sets the width format state variable, ios::x_width, to the value of width.

See “width” on page 38 for a description of what ios::x_width does.

setw() can appear in either an input stream or an output stream:

is >> setw(width);
os << setw(width);

 Manipulators 59

Parameterized Manipulators for the Format State

60 VisualAge C++ Open Class Library Reference

ostream and ostream_withassign Classes

ostream and

ostream_withassign Classes

This chapter describes the ostream class and its derived class ostream_withassign.

You can use the ostream member functions to put characters into the streambuf
object that is associated with an ostream object. ostream_withassign is derived

from ostream and includes an assignment operator.

Derivation ios

 ostream

 ostream_withassign

Header File ostream and ostream_withassign are declared in iostream.h.

Members The following members are provided for ostream and ostream_withassign:

Method Page Method Page

ostream constructors 61 osfx 62

output operator 63 put 66

ostream_withassign constructor 68 seekp 66

ostream_withassign operator= 68 tellp 67

flush 67 write 66

opfx 62

Constructors for ostream

Constructor for ostream
ostream(streambuf* sb);

The ostream constructor takes a single argument, sb, which is a pointer to a

streambuf object. The constructor creates an ostream object that is attached to the

streambuf object pointed to by sb. The constructor also initializes the format

variables to their defaults. See “Format State Variables” on page 32 for more

details on the format variables.

The other declarations for the ostream constructor in iostream.h are obsolete; do

not use them.

 Copyright IBM Corp. 1993, 1995 61

Output Prefix and Suffix Functions

Output Prefix and Suffix Functions

The output operator calls the output prefix function opfx() before inserting characters

into a stream buffer, and calls the output suffix function osfx() after inserting

characters. The following descriptions assume the functions are called as part of an

ostream object called os. See “Public Members of ostream for Formatted

Output” for more details on formatted output.

opfx int opfx();

opfx() is called by the output operator before inserting characters into a stream

buffer. opfx() checks the error state of os. If the internal flag ios::hardfail is set,

opfx() returns 0. Otherwise, opfx() flushes the stream buffer attached to the ios

object pointed to by os.tie(), if one exists, and returns the value returned by

ios::good(). ios::good() returns 0 if ios::failbit, ios::badbit, or ios::eofbit is

set. Otherwise, ios::good() returns a nonzero value.

osfx void osfx();

osfx() is called before a formatted output function returns. osfx() flushes the

streambuf object attached to os if ios::unitbuf is set.

osfx() is called by the output operator. If you overload the output operator to handle

your own classes, you should ensure that osfx() is called after any direct

manipulation of a streambuf object. Binary output functions do not call osfx().

Public Members of ostream for Formatted Output

The ostream class lets you use the output operator << to perform formatted output

(or insertion) to a stream buffer. Consider the following statement, where outs is

a reference to an ostream object and x is a variable of a built-in type:

outs << x;

The output operator << calls opfx() before beginning insertion. If opfx() (see
“opfx”) returns a nonzero value, the output operator converts x into a series of

characters and inserts these characters into the stream buffer attached to outs. If an

error occurs, the output operator sets ios::failbit.

The details of the conversion of x depend on the format state (see “Format State

Flags” on page 33) of the ostream object and the type of x. For numeric and string

values, including the char* types and wchar_t*, but excluding the char types and

wchar_t, the output operator resets the width variable ios::x_width of the format state

of an ostream object to 0, but it does not affect anything else in the format state.

62 VisualAge C++ Open Class Library Reference

Formatted Output

The output operator is defined for the following types:

¹ Arrays of characters and char values, including arrays of wchar_t and wchar_t

values.

¹ Other integral values: short, int, long

¹ float, double and long double values

¹ Pointers to void

The following sections describe the output operators for these types. The output

operator is also defined for streambuf objects.

You can also define output operators for your own types. See “Defining an

Output Operator for a Class Type” in the Open Class Library User's Guide for

instructions on how to do this.

Note: The following descriptions assume that the output operator is called with the

ostream object outs on the left side of the operator.

Output Operator for Arrays of Characters and char Values
ostream& operator<<(const char* cp);
ostream& operator<<(const signed char* cp);
ostream& operator<<(const unsigned char* cp);
ostream& operator<<(wchar_t);
ostream& operator<<(char ch);
ostream& operator<<(signed char ch);
ostream& operator<<(unsigned char ch);
ostream& operator<<(const wchar_t *);

For a pointer to a char, signed char, or unsigned char value, the output operator

inserts all the characters in the string into the stream buffer with the exception of the

null character that terminates the string. For a pointer to a wchar_t, the output

operator converts the wchar_t string to its equivalent multibyte character string, and

then inserts it into the stream buffer except for the null character that terminates the

string.

If ios::x_width is greater than zero and the representation of the value to be inserted

is less than ios::x_width, the output operator inserts enough fill characters to ensure

that the representation occupies an entire field in the stream buffer.

The output operator does not perform any conversion on char, signed char, unsigned

char, or wchar_t values.

 ostream and ostream_withassign Classes 63

Formatted Output

Output Operator for Other Integral Values
ostream& operator<<(short iv);
ostream& operator<<(unsigned short iv);
ostream& operator<<(int iv);
ostream& operator<<(unsigned int iv);
ostream& operator<<(long iv);
ostream& operator<<(unsigned long iv);
ostream& operator<<(long long iv);
ostream& operator<<(unsigned long long iv);

Note: The last two operators above are only available when the compiler is in a

mode that supports the long long data type.

For the integral types (short, unsigned short, int, unsigned int, long, and unsigned

long), the output operator converts the integral value iv according to the format state

of outs and inserts characters into the stream buffer associated with outs. There is

no overflow detection on conversion of integral types.

The conversion that takes place on iv depends, in part, on the settings of the

following format flags:

¹ If ios::oct is set, iv is converted to a series of octal digits. If ios::showbase is

set, “0” is inserted into the stream buffer before the octal digits. If the value

being inserted is equal to 0, a single “0” is inserted, not “00.”

¹ If ios::dec is set, iv is converted to a series of decimal digits.

¹ If ios::hex is set, iv is converted to a series of hexadecimal digits. If

ios::showbase is set, “0x” (or “0X” if ios::uppercase is set) is inserted into the

stream buffer before the hexadecimal digits.

If none of these format flags is set, iv is converted to a series of decimal digits. If

iv is converted to a series of decimal digits, its sign also affects the conversion:

¹ If iv is negative, a negative sign “-” is inserted before the decimal digits.

¹ If iv is equal to 0, the single digit 0 is inserted.

¹ If iv is positive and ios::showpos is set, a positive sign “+” is inserted before the

decimal digits.

Output Operator for float and double Values
ostream& operator<<(float val);
ostream& operator<<(double val);
ostream& operator<<(long double val);

The output operator performs a conversion operation on the value val and inserts it

into the stream buffer attached to outs. The conversion depends on the values

returned by the following functions:

¹ outs.precision(): returns the number of significant digits that appear after the

decimal. The default value is 6.

64 VisualAge C++ Open Class Library Reference

Formatted Output

¹ outs.width(): if this returns 0, val is inserted without any fill characters.
(See “fill” on page 36 for more details on fill characters.) If the return value

is greater than the number of characters needed to represent val, extra fill

characters are inserted so that the total number of characters inserted is equal to

the return value.

The conversion also depends on the values of the following format flags:

¹ If ios::scientific is set, val is converted to scientific notation, with one digit

before the decimal, and the number of digits after the decimal equal to the value

returned by outs.precision(). The exponent begins with a lowercase “e” unless

ios::uppercase is set, in which case the exponent begins with an uppercase “E.”

¹ If ios::fixed is set, val is converted to fixed notation, with the number of digits

after the decimal point equal to the value returned by outs.precision(). If

neither ios::fixed nor ios::scientific is set, the conversion depends upon the

value of val. See “Floating-Point Formatting” on page 35 for more details.

¹ If ios::uppercase is set, the exponents of values in scientific notation begin with

an uppercase “E.”

 See “Format State Flags” on page 33 for more details on the format state.

Output Operator for Pointers to void
ostream& operator<<(void* vp);

The output operator converts pointers to void to integral values and then converts

them to hexadecimal values as if ios::showbase were set. This version of the output

operator is used to print out the values of pointers.

Output Operator for streambuf Objects
ostream& operator<<(streambuf* sb);

If opfx() returns a nonzero value, the output operator inserts all of the characters that

can be taken from sb into the stream buffer attached to outs. Insertion stops when

no more characters can be fetched from sb. No padding is performed. The return

value is outs.

 ostream and ostream_withassign Classes 65

Unformatted Output

Public Members of ostream for Unformatted Output

You can use the functions listed in this section to insert characters into a stream

buffer without regard to the type of the values that the characters represent.

Note: The following descriptions assume that the functions are called as part of an

ostream object called outs.

put ostream& put(char c);

put() inserts c in the stream buffer attached to outs. put() sets the error state of

outs if the insertion fails.

write ostream& write(const char* cp, int n);
ostream& write(const signed char* cp, int n);
ostream& write(const unsigned char* cp, int n);

write() inserts the n characters that begin at the position pointed to by cp. This

array of characters does not need to end with a null character.

Public Members of ostream for Positioning

Note: The following descriptions assume that the functions are called as part of an

ostream object called outs.

seekp ostream& seekp(streampos sp);
ostream& seekp(streamoff so, ios::seek_dir dir);

seekp() repositions the put pointer of the ultimate consumer. seekp() with one

argument sets the put pointer to the position sp. seekp() with two arguments sets

the put pointer to the position specified by dir with the offset so. dir can have the

following values:

¹ ios::beg: the beginning of the stream

¹ ios::cur: the current position of the put pointer

¹ ios::end: the end of the stream

The new position of the put pointer is equal to the position specified by dir offset by

the value of so. If you attempt to move the put pointer to a position that is not valid,

seekp() sets ios::badbit.

66 VisualAge C++ Open Class Library Reference

Other Public Members of ostream

tellp streampos tellp();

tellp() returns the current position of the put pointer of the stream buffer that is

attached to outs.

Other Public Members of ostream

flush ostream& flush();

The ultimate consumer of characters that are stored in a stream buffer may not

necessarily consume them immediately. flush() causes any characters that are stored

in the stream buffer attached to outs to be consumed. It calls outs.rdbuf()->sync()

to accomplish this action.

Built-In Manipulators for ostream

ostream& endl(ostream& i);
ostream& ends(ostream& i);
ostream& flush(ostream&);
ios& dec(ios&);
ios& hex(ios&);
ios& oct(ios&);

The I/O Stream Library provides you with a set of built-in manipulators that can be

used with the ostream class. These manipulators have a specific effect on an

ostream object beyond extracting their own values. The built-in manipulators are

accepted by the following versions of the output operators:

ostream& operator<<(ostream& (*f)(ostream&));
ostream& operator<<(ios& (*f)(ios&));

If outs is a reference to an ostream object, then this statement inserts a newline

character and calls flush(). See “flush” for more details on flush().

outs << endl;

This statement inserts a null character:

outs << ends;

This statement flushes the stream buffer attached to outs. It is equivalent to flush()

outs << flush;

This statement sets ios::dec:

outs << dec;

 ostream and ostream_withassign Classes 67

ostream_withassign

This statement sets ios::hex:

outs << hex;

This statement sets ios::oct:

outs << oct;

Public Members of ostream_withassign

Constructor for ostream_withassign
ostream_withassign();

The ostream_withassign constructor creates an ostream_withassign object. It does

not do any initialization on the object.

Assignment Operator for ostream_withassign
ostream_withassign& operator=(ostream& os);
ostream_withassign& operator=(streambuf* sb);

There are two versions of the ostream_withassign assignment operator. The first

version takes a reference to an ostream object, os, as its argument. It associates the

streambuf attached to os with the ostream_withassign object that is on the left

side of the assignment operator.

The second version of the assignment operator takes a pointer to a streambuf object,

sb, as its argument. It associates sb with the ostream_withassign object that is on

the left side of the assignment operator.

68 VisualAge C++ Open Class Library Reference

stdiobuf

stdiobuf and stdiostream Classes

This chapter describes the stdiobuf class and stdiostream, the class that uses

stdiobuf objects as stream buffers. Operations on an stdiobuf are mirrored on the

associated FILE structure (defined in the C header file stdio.h).

Note: The classes described in this chapter are meant to be used when you have to

mix C code with C++ code. If you are writing new C++ code, use filebuf,

fstream, ifstream, and ofstream instead of stdiobuf and stdiostream. See

“fstream, ifstream, and ofstream Classes” on page 25 and “filebuf Class” on page 21

for more details on these classes. See “sync_with_stdio” on page 42 for information

on synchronizing stdio.h input and output with I/O Stream Library input and output.

Derivation ios

 stdiostream

streambuf

 stdiobuf

Header File stdiobuf and stdiostream are declared in stdiostr.h.

Members The following members are provided for stdiobuf and stdiostream:

Member Page Member Page

stdiobuf stdiostream

Constructor 69 Constructor 70

Destructor 70 rdbuf 70

stdiofile 70

Public Members of stdiobuf

Constructor for stdiobuf
stdiobuf(FILE* f);

The stdiobuf constructor creates an stdiobuf object that is associated with the FILE

pointed to by f. Changes that are made to the stream buffer in an stdiobuf object

are also made to the associated FILE pointed to by f.

Note: If ios::stdio is set in the format state of an ostream object, a call to osfx()

flushes stdout and stderr.

 Copyright IBM Corp. 1993, 1995 69

stdiostream

Destructor for stdiobuf
˜stdiobuf();

The stdiobuf destructor frees space allocated by the stdiobuf constructor and

flushes the file that this stdiobuf object is associated with.

stdiofile FILE* stdiofile();

stdiofile() returns a pointer to the FILE object that the stdiobuf object is associated

with.

Public Members of stdiostream

Constructor for stdiostream
stdiostream(FILE* file);

The stdiostream constructor creates a stdiostream object that is attached to the

FILE pointed to by file.

rdbuf stdiobuf* rdbuf();

rdbuf() returns a pointer to the stdiobuf object that is attached to the stdiostream
object.

Example of

Using

stdiostream

The following example shows how you can use the stdiostream class. Two

files are opened using fopen(). The pointers to the FILE structures are then used to

create stdiostream objects. Finally, the contents of one of these stdiostream
objects are copied into the other stdiostream object.

 #include <stdiostr.h>
 #include <stdio.h>
 #include <stdlib.h>

 void main()
 {

FILE *in = fopen("in.dat", "r");
FILE *out = fopen("out.dat", "w");

 int c;
if (in == NULL)

 {
cerr << "Cannot open file 'in.dat' for reading."

 << endl;
 exit(1);
 }

if (out == NULL)
 {

cerr << "Cannot open file 'out.dat' for writing."
 << endl;
 exit(1);
 }
 //

70 VisualAge C++ Open Class Library Reference

stdiostream

// Create a stdiostream object attached to "f"
 //
 stdiostream sin(in);
 stdiostream sout(out);

cout << "The data contained in the file is: " << endl;
 //

// Now read data from "sin" and copy it to
// "cout" and "sout"

 //
while ((c = sin.rdbuf()->sbumpc()) != EOF)

 {
cout << char(c);

 sout.rdbuf()->sputc(c);
 }

cout << endl;
 }

If you run this example with an input file containing the following:

input input input input

The following output is produced:

The data contained in the file is:
input input input input

 stdiobuf and stdiostream Classes 71

stdiostream

72 VisualAge C++ Open Class Library Reference

streambuf Class

You can use the streambuf class to manipulate objects of its derived classes

filebuf, stdiobuf, and strstreambuf, or to derive other classes from it.

Derivation streambuf is the base class for strstream, stdiobuf, and filebuf. It is not

derived from any class.

Header File streambuf is declared in iostream.h.

Members The following members are provided for streambuf:

Method Page Method Page

streambuf constructors 75 pptr 78

streambuf destructor 75 sbumpc 76

allocate 80 seekoff 83

base 77 seekpos 84

blen 80 setb 79

dbp 80 setbuf 84

doallocate 82 setg 79

eback 77 setp 79

ebuf 78 sgetc 76

egptr 78 sgetn 76

epptr 78 snextc 76

gbump 81 sputbackc 76

gptr 78 sputc 77

in_avail 75 sputn 77

out_waiting 76 stossc 77

overflow 82 sync 85

pbackfail 83 unbuffered 81

pbase 78 underflow 85

pbump 81

streambuf Public and Protected Interfaces

streambuf has both a public interface and a protected interface. You should think of

these two interfaces as being two separate classes, because the interfaces are used for

different purposes. You should also treat streambuf as if it were defined as a virtual

base class. Do not create objects of the streambuf class itself. This section

describes the ways you can use the two interfaces of streambuf.

 Copyright IBM Corp. 1993, 1995 73

Although most virtual functions are declared public, you should overload them in the

classes that you derive from streambuf, and consider them part of the protected

interface.

What is the streambuf Public Interface?

You should not create objects of the streambuf public interface directly. Instead,

you should use streambuf through one of the predefined classes derived from

streambuf. You can use objects of filebuf, strstreambuf and stdiobuf (the

predefined classes derived from streambuf) directly as implementations of stream

buffers. The public interface consists of the streambuf public member functions that

can be called on objects of these predefined classes. streambuf itself does not have

any facilities for taking characters from the ultimate producer or sending them to the

ultimate consumer. The specialized member functions that handle the interface with

the ultimate producer and the ultimate consumer are defined in filebuf,

strstreambuf and stdiobuf.

Except for the destructor of the streambuf class, the virtual functions are described

as part of the protected interface.

What is the streambuf Protected Inteface?

Use the streambuf protected interface in the following ways:

¹ As a base class to implement your own specialized stream buffers. In this sense

you can think of streambuf as a virtual base class. The streambuf class only

provides the basic functions needed to manipulate characters in a stream buffer.

The filebuf, strstreambuf and stdiobuf classes contain functions that handle

the interface with the standard ultimate consumers and producers. If you want to

perform more sophisticated operations, or if you want to use other ultimate

consumers and ultimate producers, you will have to create your own class derived

from streambuf. You need to know about the protected interface if you want to

create a class derived from streambuf.

¹ Through a predefined class derived from streambuf.

There are two kinds of functions in the protected interface:

¹ Nonvirtual member functions, which manipulate streambuf objects at a level of

detail that would be inappropriate in the public interface.

¹ Virtual member functions, which permit classes that you derive from streambuf
to customize their operations depending on the ultimate producer or ultimate

consumer. When you define the virtual functions in your derived classes, you

must ensure that these definitions fulfill the conditions stated in the descriptions

of the virtual functions. If your definitions of the virtual functions do not fulfill

these conditions, objects of the derived class may have unspecified behavior.

Although most virtual functions are declared as public members, they are

74 VisualAge C++ Open Class Library Reference

Public Members of streambuf

described with the protected interface (with the exception of the destructor for the

streambuf class) because they are meant to be overridden in the classes that you

derive from streambuf.

Public Members of the streambuf Public Interface

Note: The following descriptions assume that the functions are called as part of an

object fb of a class derived from streambuf. fb could, for example, be an object of

the class filebuf. It could also be an strstreambuf object or an stdiobuf object.

Constructors for streambuf
streambuf();
streambuf(char* buffer, int len);
streambuf(char* buffer, int len, int c); // obsolete

There are three versions of the constructor for streambuf. The version with no

arguments constructs an empty stream buffer corresponding to an empty sequence.

The values returned by base(), eback(), ebuf(), egptr(), epptr(), pptr(), gptr(),

and pbase() are initially all zero for this stream buffer.

The version with two arguments constructs an empty stream buffer of length len

starting at the position pointed to by buffer.

The version of the constructor with three arguments is obsolete. It is included in the

I/O Stream Library for compatibility with the AT&T C++ Language System Release

1.2.

Destructor for streambuf
virtual ˜streambuf();

The destructor for streambuf calls sync(). If a stream buffer has been set up and

ios::alloc is set, sync() deletes the stream buffer. See “sync” on page 85 for

more details on sync().

in_avail int in_avail();

in_avail() returns the number of characters that are available to be extracted from

the get area of fb. You can extract the number of characters equal to the value that

in_avail() returns without causing an error.

 streambuf Class 75

Public Members of streambuf

out_waiting int out_waiting();

out_waiting() returns the number of characters that are in the put area waiting to be

sent to the ultimate consumer.

sbumpc int sbumpc();

sbumpc() moves the get pointer past one character and returns the character that it

moved past. sbumpc() returns EOF if the get pointer is already at the end of the get

area.

sgetc int sgetc();

sgetc() returns the character after the get pointer without moving the get pointer

itself. If no character is available, sgetc() returns EOF.

Note: sgetc() does not change the position of the get pointer.

sgetn int sgetn(char* ptr, int n);

sgetn() extracts the n characters following the get pointer, and copies them to the

area starting at the position pointed to by ptr. If there are fewer than n characters

following the get pointer, sgetn() takes the characters that are available and stores

them in the position pointed to by ptr. sgetn() repositions the get pointer following

the extracted characters and returns the number of extracted characters.

snextc int snextc();

snextc() moves the get pointer forward one character and returns the character

following the new position of the get pointer. snextc() returns EOF if the get pointer

is at the end of the get area either before or after it is moved forward.

sputbackc int sputbackc(char c);

sputbackc() moves the get pointer back one character. The get pointer may simply

move, or the ultimate producer may rearrange the internal data structures so that the

character c is saved. The argument c must equal the character that precedes the get

pointer in the stream buffer. The effect of sputbackc() is undefined if c is not equal

to the character before the get pointer. sputbackc() returns EOF if an error occurs.

The conditions that cause errors depend on the derived class.

76 VisualAge C++ Open Class Library Reference

Functions That Return Pointers

sputc int sputc(int c);

sputc() stores the argument c after the put pointer and moves the put pointer past the

stored character. If there is enough space in the stream buffer, this will extend the

size of the put area. sputc() returns EOF if an error occurs. The conditions that cause

errors depend on the derived class.

sputn int sputn(const char* s, int n);

sputn() stores the n characters starting at s after the put pointer and moves the put

pointer to the end of the series. sputn() returns the number of characters successfully

stored. If an error occurs, sputn() returns a value less than n.

stossc void stossc();

stossc() moves the get pointer forward one character. If the get pointer is already at

the end of the get area, stossc() does not move it.

Protected Functions That Return Pointers

This section describes the functions in the protected interface of streambuf that

return pointers to boundaries of areas in a stream buffer.

Note: The following descriptions assume that the functions are called as part of an

object called dsb, which is an object of a class that is derived from streambuf.

base char* base();

base() returns a pointer to the first byte of the stream buffer. The stream buffer

consists of the space between the pointer returned by base() and the pointer returned

by ebuf().

eback char* eback();

eback() returns a pointer to the lower bound of the space available for the get area of

dsb. The space between the pointer returned by eback() and the pointer returned by

gptr() is available for putback. See “putback” on page 55 for details on
putback.

 streambuf Class 77

Functions That Return Pointers

ebuf char* ebuf();

ebuf() returns a pointer to the byte after the last byte of the stream buffer.

egptr char* egptr();

egptr() returns a pointer to the byte after the last byte of the get area of dsb.

epptr char* epptr();

epptr() returns a pointer to the byte after the last byte of the put area of dsb.

gptr char* gptr();

gptr() returns a pointer to the first byte of the get area of dsb. The get area consists

of the space between the pointer returned by gptr() and the pointer returned by

egptr(). Characters are extracted from the stream buffer beginning at the character

pointed to by gptr().

pbase char* pbase();

pbase() returns a pointer to the beginning of the space available for the put area of

dsb. Characters between the pointer returned by pbase() and the pointer returned by

pptr() have been stored in the stream buffer, but they have not been consumed by

the ultimate consumer.

pptr char* pptr();

pptr() returns a pointer to the beginning of the put area of dsb. The put area

consists of the space between the pointer returned by pptr() and the pointer returned

by epptr().

78 VisualAge C++ Open Class Library Reference

Functions That Set Pointers

Protected Functions That Set Pointers

This section describes the functions in the protected interface of streambuf that set

the boundaries of areas in a stream buffer. The values of these boundaries are

returned by the functions described in “Protected Functions That Return Pointers” on

page 77.

Note: The following descriptions assume that the functions are called as part of an

object called dsb which is an object of a class that is derived from streambuf.

setb void setb(char* startbuf, char* endbuf, int delbuf = 0);

setb() sets the beginning of the existing stream buffer (the pointer returned by

dsb.base()) to the position pointed to by startbuf, and sets the end of the stream

buffer (the pointer returned by dsb.ebuf()) to the position pointed to by endbuf.

If delbuf is a nonzero value, the stream buffer will be deleted when setb() is called

again. If startbuf and endbuf are both equal to 0, no stream buffer is established.

If startbuf is not equal to 0, a stream buffer is established, even if endbuf is less

than startbuf. If this is the case, the stream buffer has length zero.

setg void setg(char* startpbk, char* startget, char* endget);

setg() sets the beginning of the get area of dsb (the pointer returned by dsb.gptr())

to startget, and sets the end of the get area (the pointer returned by dsb.egptr()) to

endget. setg() also sets the beginning of the area available for putback (the pointer

returned by dsb.eback()) to startpbk.

setp void setp(char* startput, char* endput);

setp()sets the spaces available for the put area. Both the start (pbase()) and the

beginning (pptr()) of the put area are set to the value startput. See Figure 6 on

page 34 in the Open Class Library User's Guide for details on where each of these

functions points to within the stream buffer.

setp() sets the beginning of the put area of dsb (the pointer returned by dsb.pptr())

to the position pointed to by startput, and sets the end of the put area (the pointer

returned by dsb.epptr()) to the position pointed to by endput.

 streambuf Class 79

Other Nonvirtual Member Functions

Other Nonvirtual Protected Member Functions

This section describes the remaining nonvirtual member functions that make up the

protected interface of streambuf.

Note: The following descriptions assume that the functions are called as part of an

object called dsb which is an object of a class that is derived from streambuf.

allocate int allocate();

allocate() attempts to set up a stream buffer. allocate() returns the following

values:

¹ 0, if dsb already has a stream buffer set up (that is, dsb->base() returns a

nonzero value), or if unbuffered() returns a nonzero value. (See

“unbuffered” on page 81 for more details.) allocate() does not do any further

processing if it returns 0.

¹ 1, if allocate() does set up a stream buffer.

¹ EOF, if the attempt to allocate space for the stream buffer fails.

allocate() is not called by any other nonvirtual member function of streambuf.

blen int blen() const;

blen() returns the length (in bytes) of the stream buffer.

dbp void dbp();

dbp() writes to standard output the values returned by the following functions:

 ¹ base()

 ¹ eback()

 ¹ ebuf()

 ¹ egptr()

 ¹ epptr()

 ¹ gptr()

 ¹ pptr()

dbp() is intended for debugging. streambuf does not specify anything about the

form of the output. dbp() is considered part of the protected interface because the

information that it prints can only be understood in relation to that interface. It is

declared as a public function so that it can be called anywhere during debugging.

80 VisualAge C++ Open Class Library Reference

Other Nonvirtual Member Functions

The following example shows the output produced by dbp() when it is called as part

of a filebuf object:

 #include <iostream.h>
 void main()
 {

cout << "Here is some sample output." << endl;
 cout.rdbuf()->dbp();
 }

If you compile and run this example, your output will look like this:

Here is some sample output.
buf at 0x90210, base=0x91010, ebuf=0x91410,
pptr=0x91010, epptr=0x91410, eback=0, gptr=0, egptr=0

gbump void gbump(int offset);

gbump() offsets the beginning of the get area by the value of offset. The value of

offset can be positive or negative. gbump() does not check to see if the new value

returned by gptr() is valid.

The beginning of the get area is equal to the value returned by gptr(). See

“gptr” on page 78 for more details on gptr().

pbump void pbump(int offset);

pbump() offsets the beginning of the put area by the value of offset. The value of

offset can be positive or negative. pbump() does not check to see if the new value

returned by pptr() is valid.

The beginning of the put area is equal to the value returned by pptr(). See

“pptr” on page 78 for more details on pptr().

unbuffered int unbuffered() const;
void unbuffered(int buffstate);

unbuffered() manipulates the private streambuf variable called the buffering state.

If the buffering state is nonzero, a call to allocate() does not set up a stream buffer.

 See “allocate” on page 80 for more details on allocate().

There are two versions of unbuffered(). The version that takes no arguments returns

the current value of the buffering state. The version that takes an argument,

buffstate, changes the value of the buffering state to buffstate.

 streambuf Class 81

Virtual Member Functions

Protected Virtual Member Functions

This section describes the virtual functions in the protected interface of streambuf.

Although these virtual functions have default definitions in streambuf, they can be

overridden in classes that are derived from streambuf. The following descriptions

state the default definition of each function and the expected behavior for these

functions in classes where they are overridden.

Note: The following descriptions assume that the functions are called as part of an

object called dsb, which is an object of a class that is derived from streambuf.

doallocate virtual int doallocate();

doallocate() is called when allocate() determines that space is needed for a stream

buffer. See “allocate” on page 80 for more details on allocate().

The default definition of doallocate() attempts to allocate space for a stream buffer

using the operator new.

If you define your own version of doallocate(), it must call setb() to provide space

for a stream buffer or return EOF if it cannot allocate space. doallocate() should

only be called if unbuffered() and base() return zero.

In your own version of doallocate(), you provide the size of the buffer for your

constructor. Assign the buffer size you want to to a variable using a #define

statement. This variable can then be used in the constructor for your doallocate()

function to define the size of the buffer. See “unbuffered” on page 81 for more

details on unbuffered(). See “base” on page 77 for more details on base().

overflow virtual int overflow(int c = EOF);

overflow() is called when the put area is full, and an attempt is made to store another

character in it. overflow() may be called at other times.

The default definition of overflow() is compatible with the AT&T C++ Language

System Release 1.2 version of the stream package, but it is not considered part of the

current I/O Stream Library. Thus, the default definition of overflow() should not be

used, and every class derived from streambuf should define overflow() itself.

The definition of overflow() in your classes derived from streambuf should cause

the ultimate consumer to consume the characters in the put area, call setp() to

establish a new put area, and store the argument c in the put area if c does not equal

EOF. overflow() should return EOF if an error occurs, and it should return a value not

equal to EOF otherwise.

82 VisualAge C++ Open Class Library Reference

Virtual Member Functions

pbackfail virtual int pbackfail(int c);

pbackfail() is called when both of the following conditions are true:

¹ An attempt has been made to put back a character.

¹ There is no room in the putback area. The pointer returned by eback() equals

the pointer returned by gptr(). See “eback” on page 77 for more details on
eback(). See “gptr” on page 78 for more details on gptr().

The default definition of pbackfail() returns EOF.

If you define pbackfail() in your own classes, your definition of pbackfail() should

attempt to deal with the full putback area by, for instance, repositioning the get

pointer of the ultimate producer. If this is possible, pbackfail() should return the

argument c. If not, pbackfail() should return EOF.

seekoff virtual streampos seekoff(streamoff so, seek_dir dir,
int mode = ios::in|ios::out);

seekoff() repositions the get or put pointer of the ultimate producer or ultimate

consumer. seekoff() does not change the values returned by dsb.gptr() or

dsb.pptr().

The default definition of seekoff() returns EOF.

If you define your own seekoff() function, it should return EOF if the derived class

does not support repositioning. If the class does support repositioning, seekoff()

should return the new position of the affected pointer, or EOF if an error occurs. so

is an offset from a position in the ultimate producer or ultimate consumer. dir is a

position in the ultimate producer or ultimate consumer. dir can have the following

values:

¹ ios::beg: the beginning of the ultimate producer or ultimate consumer

¹ ios::cur: the current position in the ultimate producer or ultimate consumer

¹ ios::end: the end of the ultimate producer or ultimate consumer

The new position of the affected pointer is the position specified by dir offset by the

value of so. If you derive your own classes from streambuf, certain values of dir

may not be valid depending on the nature of the ultimate consumer or producer.

If ios::in is set in mode, the seekoff() should modify the get pointer. If ios::out is

set in mode, the put pointer should be modified. If both ios::in and ios::out are set,

both the get pointer and the put pointer should be modified.

 streambuf Class 83

Virtual Member Functions

seekpos virtual streampos seekpos(streampos pos,
int mode = ios::in|ios::out);

seekpos() repositions the get or put pointer of the ultimate producer or ultimate

consumer to the position pos. If ios::in is set in mode, the get pointer is

repositioned. If ios::out is set in mode, the put pointer is repositioned. If both

ios::in and ios::out are set, both the get pointer and the put pointer are affected.

seekpos() does not change the values returned by dsb.gptr() or dsb.pptr().

The default definition of seekpos() returns the return value of the function

seekoff(streamoff(pos), ios::beg, mode). Thus, if you want to define seeking

operations in a class derived from streambuf, you can define seekoff() and use the

default definition of seekpos().

If you define seekpos() in a class derived from streambuf, seekpos() should return

EOF if the class does not support repositioning or if pos points to a position equal to

or greater than the end of the stream. If not, seekpos() should return pos.

setbuf virtual streambuf* setbuf(char* ptr, int len);
streambuf* setbuf(unsigned char* ptr, int len);
streambuf* setbuf(char* ptr, int len, int count); // obsolete

There are three versions of setbuf(). The two versions that take two arguments set

up a stream buffer consisting of the array of bytes starting at ptr with length len.

This function is different from setb(). setb() sets pointers to an existing stream

buffer. setbuf(), however, creates the stream buffer. The version of setbuf() that

takes three arguments is obsolete. The I/O Stream Library includes it to be

compatible with AT&T C++ Language System Release 1.2.

The default definition of setbuf() sets up the stream buffer if the streambuf object

does not already have a stream buffer.

If you define setbuf() in a class derived from streambuf, setbuf() can either accept

or ignore a request for an unbuffered streambuf object. The call to setbuf() is a

request for an unbuffered streambuf object if ptr equals 0 or len equals 0.

setbuf() should return a pointer to sb if it accepts the request, and 0 otherwise.

84 VisualAge C++ Open Class Library Reference

Virtual Member Functions

sync virtual int sync();

sync() synchronizes the stream buffer with the ultimate producer or the ultimate

consumer.

The default definition of sync() returns 0 if either of the following conditions is true:

¹ The get area is empty and there are no characters waiting to go to the ultimate

consumer

¹ No stream buffer has been allocated for sb.

Otherwise, sync() returns EOF.

If you define sync() in a class derived from streambuf, it should send any characters

that are stored in the put area to the ultimate consumer, and (if possible) send any

characters that are waiting in the get area back to the ultimate producer. When

sync() returns, both the put area and the get area should be empty. sync() should

return EOF if an error occurs.

underflow virtual int underflow();

underflow() takes characters from the ultimate producer and puts them in the get

area.

The default definition of underflow() is compatible with the AT&T C++ Language

System Release 1.2 version version of the stream package, but it is not considered

part of the current I/O Stream Library. Thus, the default definition of underflow()

should not be used, and every class derived from streambuf should define

underflow() itself.

If you define underflow() in a class derived from streambuf, it should return the first

character in the get area if the get area is not empty. If the get area is empty,

underflow() should create a get area that is not empty and return the next character.

If no more characters are available in the ultimate producer, underflow() should

return EOF and leave the get area empty.

 streambuf Class 85

Virtual Member Functions

86 VisualAge C++ Open Class Library Reference

strstreambase

strstream, istrstream,

and ostrstream Classes

This chapter describes istrstream, ostrsteam, and strstream, the classes that

specialize istream, ostream, and iostream (respectively) to use strstreambuf
objects for stream buffers. These classes are called the array stream buffer classes

because their stream buffers are arrays of bytes in memory. You can use these

classes to perform input and output with strings in memory.

This chapter also describes strstreambase, the class from which the array stream

buffer classes are derived.

Derivation ios

 istream

 ostream

 iostream

 strstream

ios

 istream

 istrstream

ios

 ostream

 ostrstream

Header File strstream, istrstream, and ostrstream are declared in iostream.h.

Members The following members are provided for strstream, istrstream, and ostrstream:

Method Page Method Page

istrstream constructors 89 strstream destructor 88

istrstream destructor 89 pcount 90

ostrstream constructors 90 rdbuf 88

ostrstream destructor 90 str (strstream) 88

strstream constructor 88 str (ostrstream) 90

Public Members of strstreambase

Note: The strstreambase class is an internal class that provides common functions

for the classes that are derived from it. Do not use the strstreambase class directly.

 Copyright IBM Corp. 1993, 1995 87

strstream

The following description is provided so that you can use the function as part of

istrstream, ostrsteam, and strstream objects.

rdbuf strstreambuf* rdbuf();

rdbuf() returns a pointer to the stream buffer that the strstreambase object is

attached to.

Public Members of strstream

Constructor for strstream
strstream();
strstream(char* cp, int len, int mode);
strstream(signed char* cp, int len, int mode);
strstream(unsigned char* cp, int len, int mode);

There are two versions of the strstream constructor. The version that takes no

arguments specifies that space is allocated dynamically for the stream buffer that is

attached to the strstream object.

The version of the strstream constructor that takes three arguments specifies that

characters should be extracted and inserted into the array of bytes that starts at the

position pointed to by cp with a length of len bytes. If ios::ate or ios::app is set

in mode, cp points to a null-terminated string and insertions begin at the null

character. Otherwise, insertions begin at the position pointed to by cp. You can use

the istream::seekg() function to reposition the get pointer anywhere in this array.

See “seekg” on page 54 for more details on seekg().

Destructor for strstream
˜strstream();

The strstream destructor frees the space allocated by the strstream constructor.

str char* str();

str() returns a pointer to the stream buffer attached to the strstream and calls

freeze() (see “freeze” on page 93) with a nonzero value to prevent the stream buffer

from being deleted. If the stream buffer was constructed with an explicit array, the

value returned is a pointer to that array. If the stream buffer was constructed in

dynamic mode, cp points to the dynamically allocated area.

Until you call str(), deleting the dynamically allocated stream buffer is the

responsibility of the strstream object. After str() has been called, the calling

application has responsibility for the dynamically allocated stream buffer.

88 VisualAge C++ Open Class Library Reference

istrstream

If your application calls str() without calling freeze() with a nonzero argument (to

unfreeze the strstream), or without explicitly deleting the array of characters

returned by the call to str(), the array of characters will not be deallocated by the

strstream when it is destroyed. This situation is a potential source of a memory

leak.

Public Members of istrstream

Constructors for istrstream
istrstream(char* cp);
istrstream(signed char* cp);
istrstream(unsigned char* cp);
istrstream(const char* cp);
istrstream(const signed char* cp);
istrstream(const unsigned char* cp);
istrstream(char* cp, int len);
istrstream(signed char* cp, int len);
istrstream(unsigned char* cp, int len);
istrstream(const char* cp, int len);
istrstream(const signed char* cp, int len);
istrstream(const unsigned char* cp, int len);

The versions of the istrstream constructor that take one argument specify that

characters should be extracted from the null-terminated string that is pointed to by cp.

You can use the istream::seekg() function to reposition the get pointer in this string.

See “seekg” on page 54 for more details on seekg().

The versions of the istrstream constructor that take two arguments specify that

characters should be extracted from the array of bytes that starts at the position

pointed to by cp and has a length of len bytes. You can use istream::seekg() to

reposition the get pointer anywhere in this array.

Destructor for istrstream
˜istrstream();

The istrstream destructor frees space that was allocated by the istrstream
constructor.

 strstream, istrstream, and ostrstream Classes 89

ostrstream

Public Members of ostrstream

Constructors for ostrstream
ostrstream();
ostrstream(char* cp, int len, int mode = ios::out);
ostrstream(signed char* cp, int len, int mode = ios::out);
ostrstream(unsigned char* cp, int len, int mode = ios::out);

The version of the ostrsteam constructor that takes no arguments specifies that space

is allocated dynamically for the stream buffer that is attached to the ostrsteam
object.

The versions of the ostrsteam constructor that take three arguments specify that the

stream buffer that is attached to the ostrsteam object consists of an array that starts

at the position pointed to by cp with a length of len bytes. If ios::ate or ios::app

is set in mode, cp points to a null-terminated string and insertions begin at the null

character. Otherwise, insertions begin at the position pointed to by cp. You can use

the ostream::seekp() function to reposition the put pointer. See “seekg” on page 54

for more details on seekg().

Destructor for ostrstream
˜ostrstream();

The ostrsteam destructor frees space allocated by the ostrsteam constructor. The

destructor also writes a null byte to the stream buffer to terminate the stream.

str char* str();

str() returns a pointer to the stream buffer attached to the ostrsteam and calls

freeze() (see “freeze” on page 93) with a nonzero value to prevent the stream buffer

from being deleted. If the stream buffer was constructed with an explicit array, the

value returned is a pointer to that array. If the stream buffer was constructed in

dynamic mode, cp points to the dynamically allocated area.

Until you call str(), deleting the dynamically allocated stream buffer is the

responsibility of the ostrsteam object. After str() has been called, the calling

application has responsibility for the dynamically allocated stream buffer.

pcount int pcount();

pcount() returns the number of bytes that have been stored in the stream buffer.

pcount() is mainly useful when binary data has been stored and the stream buffer

attached to the ostrsteam object is not a null-terminated string. pcount() returns the

total number of bytes, not just the number of bytes up to the first null character.

90 VisualAge C++ Open Class Library Reference

strstreambuf Class

strstreambuf Class

This chapter describes the strstreambuf class, the class that specializes streambuf
to use an array of bytes in memory as the ultimate producer or ultimate consumer.

Derivation streambuf

 strstreambuf

Header File strstreambuf is declared in strstream.h.

Members The following members are provided for strstreambuf:

Method Page Method Page

strstreambuf constructors 91 seekoff 93

strstreambuf destructors 92 setbuf 94

doallocate 93 str 93

freeze 93 underflow 94

overflow 93

Public Members of strstreambuf

Constructors for strstreambuf
strstreambuf();
strstreambuf(int bufsize);
strstreambuf(void* (*alloc) (long), void(*free)(void*));
strstreambuf(char* sp, int len, char* tp);
strstreambuf(signed char* sp, int len, signed char* tp);
strstreambuf(unsigned char* sp, int len, unsigned char* tp);

The first version of the strstreambuf constructor takes no arguments and constructs

an empty strstreambuf object in dynamic mode. Space will be allocated

automatically to accommodate the characters that are put into the strstreambuf
object. This space will be allocated using the operator new and deallocated using the

operator delete. The characters that are already stored by the strstreambuf object

may have to be copied when new space is allocated. If you know you are going to

insert many characters into an strstreambuf object, you can give the I/O Stream

Library an estimate of the size of the object before you create it by calling

strstreambuf::setbuf(). See “setbuf” on page 94 for more details on setbuf().

 Copyright IBM Corp. 1993, 1995 91

strstreambuf Class

The second version of the strstreambuf constructor takes one argument and

constructs an empty strstreambuf object in dynamic mode. The initial size of the

stream buffer will be at least bufsize bytes.

The third version of the strstreambuf constructor takes two arguments and creates

an empty strstreambuf object in dynamic mode. alloc is a pointer to the function

that is used to allocate space. alloc is passed a long value that equals the number

of bytes that it is supposed to allocate. If the value of alloc is 0, the operator new is

used to allocate space. free is a pointer to the function that is used to free space.

free is passed an argument that is a pointer to the array of bytes that alloc

allocated. If free has a value of 0, the operator delete is used to free space.

The fourth, fifth, and sixth versions of the strstreambuf constructor take three

arguments and construct a strstreambuf object with a stream buffer that begins at

the position pointed to by sp. The nature of the stream buffer depends on the value

of len:

¹ If len is positive, the len bytes following the position pointed to by sp make up

the stream buffer.

¹ If len equals 0, sp points to the beginning of a null-terminated string, and the

bytes of that string, excluding the terminating null character, will make up the

stream buffer.

¹ If len is negative, the stream buffer has an indefinite length. The get pointer of

the stream buffer is initialized to sp, and the put pointer is initialized to tp.

Regardless of the value of len, if the value of tp is 0, the get area will include the

entire stream buffer, and insertions will cause errors.

Destructor for strstreambuf
˜strstreambuf();

If freeze() has not been called for the strstreambuf object and a stream buffer is

associated with the strstreambuf object, the strstreambuf destructor frees the

space allocated by the strstreambuf constructor. The effect of the destructor

depends on the constructor used to create the strstreambuf object:

¹ If you created the strstreambuf object using the constructor that takes two

pointers to functions as arguments (see “Constructors for strstreambuf” on

page 91 for more details), the destructor frees the space allocated by the

destructor by calling the function pointed to by the second argument to the

constructor.

¹ If you created the strstreambuf object using any of the other constructors, the

destructor calls the delete operator to free the space allocated by the constructor.

92 VisualAge C++ Open Class Library Reference

strstreambuf Class

doallocate virtual int doallocate();

doallocate() attempts to allocate space for a stream buffer. If you created the

strstreambuf object using the constructor that takes two pointers to functions as

arguments (see “Constructors for strstreambuf” on page 91 for more details),
doallocate() allocates space for the stream buffer by calling the function pointed to

by the first argument to the constructor. Otherwise, doallocate() calls the operator

new to allocate space for the stream buffer.

freeze void freeze(int n=1);

freeze() controls whether the array that makes up a stream buffer can be deleted

automatically. If n has a nonzero value, the array is not deleted automatically. If n

equals 0, the array is deleted automatically when more space is needed or when the

strstreambuf object is deleted. If you call freeze() with a nonzero argument for a

strstreambuf object that was allocated in dynamic mode, any attempts to put

characters in the stream buffer may result in errors. Therefore, you should avoid

insertions to such stream buffers because the results are unpredictable. However, if

you have a “frozen” stream buffer and you call freeze() with an argument equal to 0,

you can put characters in the stream buffer again.

Only space that is acquired through dynamic allocation is ever freed.

overflow virtual int overflow(int c);

overflow() causes the ultimate consumer to consume the characters in the put area

and calls setp() to establish a new put area. The argument c is stored in the new put

area if c is not equal to EOF.

str char* str();

str() returns a pointer to the first character in the stream buffer and calls freeze()

with a nonzero argument. Any attempts to put characters in the stream buffer may

result in errors. If the strstreambuf object was created with an explicit array (that

is, the strstreambuf constructor with three arguments was used), str() returns a

pointer to that array. If the strstreambuf object was created in dynamic mode and

nothing is stored in the array, str() may return 0.

seekoff virtual streampos seekoff(
streamoff so, ios::seek_dir dir, int mode);

 strstreambuf Class 93

strstreambuf Class

seekoff() repositions the get or put pointer in the array of bytes in memory that

serves as the ultimate producer or the ultimate consumer. For a text mode file,

seekoff() returns the actual physical file position, because carriage return characters

and end-of-file characters are discarded on input. Thus, there may not be a

one-to-one correspondence between the characters in a stream and those in its

external representation. For further details, see “Low-Level I/O” in the IBM

VisualAge�C++ for OS/2 C Library Reference, S25H-6964.

If you constructed the strstreambuf in dynamic mode (see “Constructors for

strstreambuf” on page 91), the results of seekoff() are unpredictable. Therefore, do

not use seekoff() with an strstreambuf object that you created in dynamic mode.

If you did not construct the strstreambuf object in dynamic mode, seekoff()

attempts to reposition the get pointer or the put pointer, depending on the value of

mode. If ios::in is set in mode, seekoff() repositions the get pointer. If ios::out is

set in mode, seekoff() repositions the put pointer. If both ios::in and ios::out are

set, seekoff() repositions both pointers.

seekoff() attempts to reposition the affected pointer to the value of dir + so. dir

can have the following values:

¹ ios::beg: the beginning of the array in memory

¹ ios::cur: the current position in the array in memory

¹ ios::end: the end of the array in memory

If the value of dir + so is equal to or greater than the end of the array, the value is

not valid and seekoff() returns EOF. Otherwise, seekoff() sets the affected pointer

to this value and returns this value.

setbuf virtual streambuf* setbuf(0, int bufsize);

setbuf() records bufsize. The next time that the strstreambuf object dynamically

allocates a stream buffer, the stream buffer is at least bufsize bytes long.

Note: If you call setbuf() for an strstreambuf object, you must call it with the

first argument equal to 0.

underflow virtual int underflow();

If the get area is not empty, underflow() returns the first character in the get area. If

the get area is empty, underflow() creates a new get area that is not empty and

returns the first character. If no more characters are available in the ultimate

producer, underflow() returns EOF and leaves the get area empty.

94 VisualAge C++ Open Class Library Reference

Flat Collections

Part 3. Flat Collection Classes

This part contains detailed descriptions of the flat Collection Classes.

“Introduction to Flat Collections” on page 97 describes the common member

functions for flat collections. Subsequent chapters describe individual collection

classes.

For information on the organization of chapters that describe individual abstract data

types, see “Format of Class Descriptions” on page 98.

Introduction to Flat Collections . 97

Flat Collection Member Functions . 101

Bag . 133

Deque . 139

Equality Sequence . 145

Heap . 149

Key Bag . 153

Key Set . 159

Key Sorted Bag . 165

Key Sorted Set . 171

Map . 181

Priority Queue . 189

Queue . 193

Relation . 197

Sequence . 201

Set . 207

Sorted Bag . 213

Sorted Map . 219

Sorted Relation . 225

Sorted Set . 229

Stack . 237

 Copyright IBM Corp. 1993, 1995 95

Flat Collections

96 VisualAge C++ Open Class Library Reference

Flat Collections

Introduction to Flat Collections

This chapter defines some of the terms used in describing the Collection Class

Library classes and functions, describes the format of chapters that describe individual

collections, and describes some types defined by the Collection Class Library.

 Terms Used

CLASS_BASE_NAME

For constructor and destructor declarations, this term is used in

place of the default implementation variant of a class. For

example, the constructor CLASS_BASE_NAME(...) for a Bag, is

really IBag(...), because the default implementation variant of a

bag is IBag.

CLASS_NAME For member function declarations, this term is used in place of the

class with template arguments. For example, if you want to use:

IBoolean operator != (CLASS_NAME const& collection) const;

for a Bag on BST Key Sorted Set, substitute

IBagOnBSTKeySortedSet<ElementName> for CLASS_NAME.

equal element Refers to equality of elements as defined by the equality operation

or ordering relation provided for the element type (Chapter 9,

“Element Functions and Key-Type Functions” in the Open Class

Library User's Guide describes the purpose of the equality

operation and ordering relation.) Where both equality operation

and ordering relation are provided, the Collection Class Library

may use either to determine element equality.

given ... Refers to an argument of the described function, such as given

element, given key, or given collection.

iteration order The order in which elements are visited in allElementsDo() and

setToNext() or setToPrevious().

In ordered collections, the element at position 1 will be visited

first, then the element at position 2, and so on. Sorted collections,

in particular, are visited following the ordering relation provided

for the element type.

In collections that are not ordered, the elements are visited in an

arbitrary order. Each element is visited exactly once.

 Copyright IBM Corp. 1993, 1995 97

Format of Class Descriptions

positioning property

The property of an element that is used to position the element in

a collection. For key collections, the positioning property is key

equality. For nonsequential collections with element equality, the

positioning property is element equality. Other collections have

no positioning property.

same key Refers to equality of keys as defined by the equality operation or

ordering relation provided for the key type. Where both equality

operation and ordering relation are provided, the Collection Class

Library may use either to determine key equality.

this collection The collection to which a function is applied. Contrast with the

given collection, which is an argument supplied to a function. The

collection is synonymous with this collection.

undefined cursor A cursor that may or may not be valid; there is no way to know

whether the cursor is valid or not. An undefined cursor, even if it

remains valid, may refer to a different element than before, or

even to no element of the collection. Do not use cursors, once

they become undefined, in functions that require the cursor to

point to an element of the collection.

Format of Class Descriptions

Each chapter describing one or more Collection Classes consists of the following

components:

¹ The chapter title, which usually refers to the kind of collection being discussed.

¹ A description of the collection's characteristics, such as whether the collection is

sorted or unsorted, or whether the type and value of the elements are relevant.

¹ A textual example of using the collection in an application.

¹ Information on the class's derivation.

¹ A section on class implementation variants that provides some or all of the

following information:

– The default implementation, and the classes that you can use to alter the way

the collection is implemented. These variant classes are based on other

abstract data types within the Collection Class Library. For example, in the

chapter on heap collections, the class IHeapOnTabularSequence is a heap

collection based on ITabularSequence.

– The names of the header files that correspond to particular implementation

variants, so that you can include those files in your source code to make use

of the implementation variants.

98 VisualAge C++ Open Class Library Reference

Types Defined for the Collection Class Library

¹ A section on template arguments and required parameters that provides the

following information:

– Template arguments, which identify what parameters you must supply when

you instantiate a particular implementation variant.

– Required functions, which are functions that must be provided by the

element type or key type you use for any implementation variant.

¹ A section on the reference class. The reference class allows you to make use of

polymorphism. This section contains information on include files, template

arguments and required functions similar to the information provided for the

implementation variants described above. In general, reference classes do not put

any additional requirements on the element type or key type. The requirements

are those of the implementation variant used with the reference class.

¹ Optionally, a coding example to show you how to use the collection.

 Required Functions

As described in Chapter 9, “Element Functions and Key-Type Functions” in the
Open Class Library User's Guide, the Collection Classes require that you provide

certain functions for the element type and key type. These functions are required by

member functions of the Collection Class Library to manipulate elements and keys.

The functions you must provide depend on the abstraction you use and on the

implementation variant you choose. For example, you will usually need to provide a

key access for all keyed abstractions, and for a hash table implementation you will

need to provide a hash function.

Types Defined for the Collection Class Library

The following types are defined in iglobals.h or in header files included by

iglobals.h:

typedef int IBoolean;

 enum {
false = 0,
False = 0,

 true = 1,
 True = 1
 };

typedef unsigned long INumber;
typedef unsigned long IPosition;

enum ITreeIterationOrder {IPreorder, IPostorder}; // for n-ary tree only

enum IExplicitInit { IINIT }; //for pointer classes only

 Introduction to Flat Collections 99

Types Defined for the Collection Class Library

The IExplicitInit type is used by pointers from the pointer classes as a second

constructor argument, in order to avoid using the constructor as an implicit conversion

operator.

Note: If your environment defines another boolean type, use IBoolean wherever you

want to refer to Boolean in the context of the Collection Class Library.

100 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

Flat Collection Member Functions

Each flat collection implements some or all of the member functions described in this

chapter. Chapters on individual classes identify which functions are implemented for

those classes.

Constructor CLASS_BASE_NAME (INumber numberOfElements = 100) ;

Constructs a collection. numberOfElements is the estimated maximum number of

elements contained in the collection. The collection is unbounded and is initially

empty. If the estimated maximum is exceeded, the collection is automatically

enlarged.

Note: The collection constructor does not define whether any elements are

constructed when the collection is constructed. For some classes, the element's

default constructor may be invoked when the collection's constructor is invoked. This

happens if a tabular or a diluted sequence implementation variant is used for a

collection. The element's default constructor is used to allocate the required storage

and initialize the elements. Therefore, a default constructor must be available for

elements in such cases.

 Exception: IOutOfMemory

Copy

Constructor

CLASS_BASE_NAME (CLASS_NAME const& collection) ;

Constructs a collection and copies all elements from the given collection into the

collection as described for “addAllFrom” on page 104.

 Exception: IOutOfMemory

Destructor ˜CLASS_BASE_NAME () ;

Removes all elements from the collection. Destructors are called for all elements

contained in the collection and for elements that have been constructed in advance.

Side Effects: All cursors of the collection become undefined.

 Copyright IBM Corp. 1993, 1995 101

Flat Collection Member Functions

operator!= IBoolean operator!= (CLASS_NAME const& collection) const;

Returns True if the given collection is not equal to the collection. For a definition of

equality for collections, see “operator==.”

operator= CLASS_NAME& operator= (CLASS_NAME const& collection) ;

Copies the given collection to the collection. Removes all elements from the

collection and adds the elements from the given collection as described for

“addAllFrom” on page 104.

 Preconditions

¹ If the collection is bounded, numberOfElements() of the given collection must be

less than maxNumberOfElements() of this collection.

 Side Effects

¹ All cursors of this collection become undefined.

¹ Collection classes supporting Visual Builder send a modifiedId notification.

Return Value: Returns a reference to the collection.

 Exceptions

 ¹ IOutOfMemory

¹ IFullException, if the collection is bounded

operator== IBoolean operator== (CLASS_NAME const& collection) const;

Returns True if the given collection is equal to the collection. Two collections are

equal if the number of elements in each collection is the same, and if the condition

for the collection is described in the following list:

Type of Collection Condition

Unique Elements If the collections have unique elements, any element that

occurs in one collection must occur in the other collection.

Non-Unique Elements If an element has n occurrences in one collection, it must

have exactly n occurrences in the other collection.

Sequential The ordering of the elements is the same for both

collections.

102 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

add IBoolean add (Element const& element) ;

IBoolean add (Element const& element,
ICursor& cursor) ;

If the collection is unique (with respect to elements or keys) and the element or key

is already contained in the collection, sets the cursor to the existing element in the

collection without adding the element. Otherwise, it adds the element to the

collection and sets the cursor to the added element. In sequential collections, the

given element is added as the last element. In sorted collections, the element is

added at a position determined by the element or key value. Adding an element will

either use the element's copy constructor or the assignment operator provided for the

element type, depending on the implementation variant you choose. See “contains”

on page 113 for the definition of element or key containment.

 Preconditions

¹ The cursor must belong to the collection.

¹ If the collection is bounded and unique, the element or key must exist or

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the same

key as the given element, this element must be equal to the given element.

 Side Effects

¹ If an element was added, all cursors of this collection, except the given cursor,

become undefined.

¹ If an element was added, collection classes supporting Visual Builder send an

addedId notification.

Return Value: Returns True if the element was added.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

¹ IFullException, if the collection is bounded

¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 Flat Collection Member Functions 103

Flat Collection Member Functions

addAllFrom void addAllFrom (CLASS_NAME const& collection) ;

void addAllFrom (
IACollection <Element> const& collection) ;

Adds (copies) all elements of the given collection to the collection. The elements are

added in the iteration order of the given collection. The contents of the elements, not

the pointers to the elements, are copied. The elements are added according to the

definition of add for this collection. The given collection is not changed.

Preconditions: Because the elements are added one by one, the following

preconditions are tested for each individual add operation:

¹ If the collection is bounded and unique, the element or key must exist or

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the same

key as the given element, this element must be equal to the given element.

 Side Effects

¹ If any elements were added, all cursors of this collection become undefined.

¹ If any elements were added, collection classes supporting Visual Builder send a

modifiedId notification.

 Exceptions

 ¹ IOutOfMemory

 ¹ IIdenticalCollectionException

¹ IFullException, if the collection is bounded

¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

104 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

addAsFirst void addAsFirst (Element const& element) ;

void addAsFirst (Element const& element,
ICursor& cursor) ;

Adds the element to the collection as the first element in sequential order. Sets the

cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection.

¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

 Side Effects

¹ All cursors of this collection, except the given cursor, become undefined.

¹ If an element was added, collection classes supporting Visual Builder send an

addedId notification.

 Exceptions

 ¹ ICursorInvalidException

 ¹ IOutOfMemory

¹ IFullException, if the collection is bounded

addAsLast void addAsLast (Element const& element) ;

void addAsLast (Element const& element,
ICursor& cursor) ;

Adds the element to the collection as the last element in sequential order. Sets the

cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection.

¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

 Side Effects

¹ All cursors of this collection, except the given cursor, become undefined.

¹ If an element was added, collection classes supporting Visual Builder send an

addedId notification.

All cursors of this collection, except the given cursor, become undefined.

 Flat Collection Member Functions 105

Flat Collection Member Functions

 Exceptions

 ¹ ICursorInvalidException

 ¹ IOutOfMemory

¹ IFullException, if the collection is bounded

addAsNext void addAsNext (Element const& element,
ICursor& cursor) ;

Adds the element to the collection as the element following element pointed to by the

cursor. Sets the cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection and must point to an element of the

collection.

¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

 Side Effects

¹ All cursors of this collection, except the given cursor, become undefined.

¹ If an element was added, collection classes supporting Visual Builder send an

addedId notification.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

¹ IFullException, if the collection is bounded

 addAsPrevious
void addAsPrevious (Element const& element,

ICursor& cursor) ;

Adds the element to the collection as the element preceding the element pointed to by

the cursor. Sets the cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection and must point to an element of the

collection.

¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

 Side Effects

¹ All cursors of this collection, except the given cursor, become undefined.

¹ If an element was added, collection classes supporting Visual Builder send an

addedId notification.

106 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

¹ IFullException, if the collection is bounded

 addAtPosition
void addAtPosition (IPosition position,

Element const& element) ;

void addAtPosition (IPosition position,
Element const& element, ICursor& cursor) ;

Adds the element at the given position to the collection, and sets the cursor to the

added element. If an element exists at the given position, the new element is added

as the element preceding the existing element.

 Preconditions

¹ The cursor must belong to the collection.

¹ (1 ≤ position ≤ numberOfElements + 1).

¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

 Side Effects

¹ All cursors of this collection, except the given cursor, become undefined.

¹ If an element was added, collection classes supporting Visual Builder send an

addedId notification.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

 ¹ IPositionInvalidException

¹ IFullException, if the collection is bounded

 addDifference
void addDifference (CLASS_NAME const& collection1,

CLASS_NAME const& collection2) ;

Creates the difference between the two given collections, and adds this difference to

the collection. The contents of the added elements, not the pointers to those

elements, are copied.

For a definition of the difference between two collections, see “differenceWith” on

page 114.

 Flat Collection Member Functions 107

Flat Collection Member Functions

Preconditions: Because the elements are added one by one, the following

preconditions are tested for each individual addition.

¹ If the collection is bounded and unique, the element or key must exist or

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the same

key as the given element, this element must be equal to the given element.

 Side Effects

¹ If any elements were added, all cursors of this collection become undefined.

¹ If any elements were added, collection classes supporting Visual Builder send a

modifiedId notification.

 Exceptions

 ¹ IOutOfMemory

¹ IFullException, if the collection is bounded

¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 addIntersection
void addIntersection (CLASS_NAME const& collection1,

CLASS_NAME const& collection2) ;

Creates the intersection of the two given collections, and adds this intersection to the

collection. The contents of the added elements, not the pointers to those elements,

are copied.

For a definition of the intersection of two collections, see “intersectionWith” on

page 117.

Preconditions: Because the elements are added one by one, the following

preconditions are tested for each individual addition.

¹ If the collection is bounded and unique, the element or key must exist or

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the same

key as the given element, this element must be equal to the given element.

108 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

 Side Effects

¹ If any elements were added, all cursors of this collection become undefined.

¹ If any elements were added, collection classes supporting Visual Builder send a

modifiedId notification.

 Exceptions

 ¹ IOutOfMemory

¹ IFullException, if the collection is bounded

¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 addOrReplaceElementWithKey
IBoolean addOrReplaceElementWithKey (

Element const& element);

IBoolean addOrReplaceElementWithKey (
Element const& element, ICursor& cursor) ;

If an element is contained in the collection where the key is equal to the key of the

given element, sets the cursor to this element in the collection and replaces it with the

given element. Otherwise, it adds the given element to the collection, and sets the

cursor to the added element. If the given element is added, the contents of the

element, not a pointer to it, is added.

 Preconditions

¹ The cursor must belong to the collection.

¹ If the collection is bounded, an element with the given key must be contained in

the collection, or (numberOfElements() < maxNumberOfElements()).

 Side Effects

¹ If the element was added, all cursors of this collection, except the given cursor,

become undefined.

¹ If the element was added, collection classes supporting Visual Builder send a

replacedId notification.

Return Value: Returns True if the element was added. Returns False if the element

was replaced.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

¹ IFullException, if the collection is bounded

 Flat Collection Member Functions 109

Flat Collection Member Functions

addUnion void addUnion (CLASS_NAME const& collection1,
CLASS_NAME const& collection2) ;

Creates the union of the two given collections, and adds this union to the collection.

The contents of the added elements, not the pointers to those elements, are copied.

For a definition of the union of two collections, see “unionWith” on page 132.

Preconditions: Because the elements are added one by one, the following

preconditions are tested for each individual addition.

¹ If the collection is bounded and unique, the element or key must exist or

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the same

key as the given element, this element must be equal to the given element.

 Side Effects

¹ If any elements were added, all cursors of this collection become undefined.

¹ If any elements were added, collection classes supporting Visual Builder send a

modifiedId notification.

 Exceptions

 ¹ IOutOfMemory

¹ IFullException, if the collection is bounded

¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 allElementsDo
IBoolean allElementsDo (

IBoolean (*function) (Element&, void*),
void* additionalArgument = 0) ;

IBoolean allElementsDo (
IBoolean (*function) (Element const&, void*),
void* additionalArgument = 0) const;

Calls the given function for all elements in the collection until the given function

returns False. The elements are visited in iteration order. Additional arguments can

be passed to the given function using additionalArgument. The additional argument

defaults to zero if no additional argument is given.

110 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

Notes:

1. The given function must not remove elements from or add them to the collection.

If you want to remove elements, you can use the removeAll() function with a

property argument. For further information see “removeAll” on page 125.

2. For the non-const version of allElementsDo(), the given function must not

manipulate the element in the collection in a way that changes the positioning

property of the element.

Return Value: Returns True if the given function returns True for every element it

is applied to.

 allElementsDo
IBoolean allElementsDo (

IIterator <Element>& iterator) ;

IBoolean allElementsDo (
IConstantIterator <Element>& iterator) const;

Calls the applyTo() function of the given iterator for all elements of the collection

until the applyTo() function returns False. The elements are visited in iteration

order. Additional arguments may be passed as arguments to the constructor of the

derived iterator class. (For further details, see “Iteration Using Iterators” in the Open

Class Library User's Guide.)

Notes:

1. The applyTo() function must not remove elements from or add elements to the

collection. If you want to remove elements, you can use the removeAll()

function with a property argument. For further information, see “removeAll” on

page 125.

2. For the non-const version of allElementsDo(), the applyTo() function must not

manipulate the element in the collection in a way that changes the positioning

property of the element.

Return Value: Returns True if the applyTo() function returns True for every

element it is applied to.

 Flat Collection Member Functions 111

Flat Collection Member Functions

anyElement Element const& anyElement () const;

Returns a reference to an arbitrary element of the collection.

Precondition: The collection must not be empty.

 Exception: IEmptyException

compare long compare (CLASS_NAME const& collection,
 long (*comparisonFunction)
 (Element const& element1,Element const& element2)
) const;

Compares the collection with the given collection. Comparison yields <0 if the

collection is less than the given collection, 0 if the collection is equal to the given

collection, and >0 if the collection is greater than the given collection. Comparison is

defined by the first pair of corresponding elements, in both collections, that are not

equal. If such a pair exists, the collection with the greater element is the greater one.

Otherwise, the collection with more elements is the greater one.

Notes:

1. The given comparison function must return a result according to the following

rules:

>0 if (element1 > element2)

0 if (element1 == element2)

<0 if (element1 < element2)

2. For elements of type char*, compare() is not locale-sensitive by default. Because

it uses strcmp() and not strcoll(), it compares the binary values representing the

characters, and is not based on the LC_COLLATE category of the current locale. Its

results are reliable only for code pages and character sets in which the collating

sequence matches the sequence of binary representations.

Return Value: Returns the result of the collection comparison.

112 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

contains IBoolean contains (Element const& element) const;

Returns True if the collection contains an element equal to the given element.

 containsAllFrom
IBoolean containsAllFrom (

CLASS_NAME const& collection) const;

IBoolean containsAllFrom (
IACollection <Element> const& collection) const;

Returns True if all the elements of the given collection are contained in the

collection. The definition of containment is described in “contains.”

 containsAllKeysFrom
IBoolean containsAllKeysFrom (

CLASS_NAME const& collection) const;

IBoolean containsAllKeysFrom (
IACollection <Element> const& collection) const;

Returns True if all of the keys of the given collection are contained in the collection.

 containsElementWithKey
IBoolean containsElementWithKey (Key const& key) const;

Returns True if the collection contains an element with the same key as the given

key.

copy void copy (IACollection <Element> const& collection) ;

Copies the given collection to this collection. copy() removes all elements from this

collection, and adds the elements from the given collection. For information on how

adding is done, see “addAllFrom” on page 104.

Note: The given collection may be of a concrete type other than the collection itself.

In this case, copying implicitly performs a conversion. If, for example, the given

collection is a bag and the collection itself is a set, elements with multiple

occurrences in the copied bag will only occur once in the resulting set.

Preconditions: Because the elements are copied one by one, the following

preconditions are tested for each individual copy operation:

¹ If the collection is bounded and unique, the element or key must exist or

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,

(numberOfElements() < maxNumberOfElements()).

 Flat Collection Member Functions 113

Flat Collection Member Functions

¹ If the collection is a map or a sorted map and contains an element with the same

key as the given element, this element must be equal to the given element.

 Side Effects

¹ All cursors of this collection become undefined.

¹ If any elements were copied, collection classes supporting Visual Builder send a

modifiedId notification.

 Exceptions

 ¹ IOutOfMemory

¹ IFullException, if the collection is bounded

¹ IKeyAlreadyExistsException, if the collection has unique keys. This exception

may be thrown, for example, when copying a bag into a map.

dequeue void dequeue () ;

void dequeue (Element& element) ;

Copies the first element of the collection to the given element, and removes it from

the collection.

Precondition: The collection must not be empty.

 Side Effects

¹ All cursors of this collection become undefined.

¹ If the element is removed, collection classes supporting Visual Builder send a

modifiedId notification.

 Exception: IEmptyException

 differenceWith
void differenceWith (CLASS_NAME const& collection) ;

Makes the collection the difference between the collection and the given collection.

The difference of A and B (A minus B) is the set of elements that are contained in A

but not in B.

The following rule applies for bags with duplicate elements: If bag P contains the

element X m times and bag Q contains the element X n times, the difference of P and

Q contains the element X m-n times if m > n, and zero times if m≤n.

114 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

 Side Effects

¹ If any elements were removed, all cursors of this collection become undefined.

¹ If the element is removed, collection classes supporting Visual Builder send a

modifiedId notification.

elementAt Element& elementAt (ICursor const& cursor) ;

Element const& elementAt (ICursor const& cursor) const;

Returns a reference to the element pointed to by the given cursor.

Note: For the version of elementAt() without the const suffix, do not manipulate

the element or the key of the element in the collection in a way that changes the

positioning property of the element.

Precondition: The cursor must belong to the collection and must point to an element

of the collection.

 Exception: ICursorInvalidException

 elementAtPosition
Element const& elementAtPosition (

IPosition position) const;

Returns a reference to the element at the given position in the collection.

Position 1 specifies the first element.

Position must be a valid position in the collection; that is,

(1 ≤ position ≤ numberOfElements()).

 Precondition: (1 ≤ position ≤ numberOfElements()).

 Exception: IPositionInvalidException

 elementWithKey
Element& elementWithKey (Key const& key) ;

Element const& elementWithKey (Key const& key) const;

Returns a reference to an element specified by the key.

 Flat Collection Member Functions 115

Flat Collection Member Functions

Notes:

1. For the version of elementWithKey() without a const suffix, do not manipulate

the element in the collection in a way that changes the positioning property of the

element.

2. If there are several elements with the given key, an arbitrary one is returned.

Precondition: The given key is contained in the collection.

 Exception: INotContainsKeyException

enqueue void enqueue (Element const& element) ;

void enqueue (Element const& element,
ICursor& cursor) ;

Adds the element to the collection, and sets the cursor to the added element. For

ordinary queues, the given element is added as the last element. For priority queues,

the element is added at a position determined by the ordering relation provided for

the element or key type.

 Preconditions

¹ The cursor must belong to the collection.

¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

 Side Effects

¹ All cursors of this collection except the given cursor become undefined.

¹ If the element is added, collection classes supporting Visual Builder send a

modifiedId notification.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

¹ IFullException, if the collection is bounded

116 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

firstElement Element const& firstElement () const;

Returns a reference to the first element of the collection.

Precondition: The collection must not be empty.

 Exception: IEmptyException

 intersectionWith
void intersectionWith (CLASS_NAME const& collection) ;

Makes the collection the intersection of the collection and the given collection. The

intersection of A and B is the set of elements that is contained in both A and B.

The following rule applies for bags with duplicate elements: If bag P contains the

element X m times and bag Q contains the element X n times, the intersection of P

and Q contains the element X MIN(m,n) times.

 Side Effects

¹ If any elements were removed, all cursors of this collection become undefined.

¹ If any elements were removed, collection classes supporting Visual Builder send

a modifiedId notification.

isBounded IBoolean isBounded () const;

Returns True if the collection is bounded.

isEmpty IBoolean isEmpty () const;

Returns True if the collection is empty.

isFirst IBoolean isFirst (ICursor const& cursor) const;

Returns True if the given cursor points to the first element of the collection.

Preconditions: The cursor must belong to the collection and must point to an

element of the collection.

 Exception: ICursorInvalidException

 Flat Collection Member Functions 117

Flat Collection Member Functions

isFull IBoolean isFull () const;

Returns True if the collection is bounded and contains the maximum number of

elements; that is, if (numberOfElements() == maxNumberOfElements()).

isLast IBoolean isLast (ICursor const& cursor) const;

Returns True if the given cursor points to the last element of the collection.

Preconditions: The cursor must belong to the collection and must point to an

element of the collection.

 Exception: ICursorInvalidException

key Key const& key (Element const& element) const;

Returns a reference to the key of the given element using the key() function provided

for the element type.

lastElement Element const& lastElement () const;

Returns a reference to the last element of the collection.

Precondition: The collection must not be empty.

 Exception: IEmptyException

locate IBoolean locate (Element const& element,
ICursor& cursor) const;

Locates an element in the collection that is equal to the given element. Sets the

cursor to point to the element in the collection, or invalidates the cursor if no such

element exists.

If the collection contains several such elements, the first element in iteration order is

located.

Precondition: The cursor must belong to the collection.

Return Value: Returns True if an element was found.

 Exceptions: ICursorInvalidException

118 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

 locateElementWithKey
IBoolean locateElementWithKey (Key const& key,

ICursor& cursor) const;

Locates an element in the collection with the same key as the given key. Sets the

cursor to point to the element in the collection, or invalidates the cursor if no such

element exists.

If the collection contains several such elements, the first element in iteration order is

located.

Precondition: The cursor must belong to the collection.

Return Value: Returns True if an element was found.

 Exception: ICursorInvalidException

locateFirst IBoolean locateFirst (Element const& element,
ICursor& cursor) const;

Locates the first element in iteration order in the collection that is equal to the given

element. Sets the cursor to the located element, or invalidates the cursor if no such

element exists.

Precondition: The cursor must belong to the collection.

Return Value: Returns True if an element was found.

 Exception: ICursorInvalidException

locateLast IBoolean locateLast (Element const& element,
ICursor& cursor) const;

Locates the last element in iteration order in the collection that is equal to the given

element. Sets the cursor to the located element, or invalidates the cursor if no such

element exists.

Precondition: The cursor must belong to the collection.

Return Value: Returns True if an element was found.

 Exception: ICursorInvalidException

 Flat Collection Member Functions 119

Flat Collection Member Functions

locateNext IBoolean locateNext (Element const& element,
ICursor& cursor) const;

Locates the next element in iteration order in the collection that is equal to the given

element, starting at the element next to the one pointed to by the given cursor. Sets

the cursor to point to the element in the collection. The cursor is invalidated if the

end of the collection is reached and no more occurrences of the given element are left

to be visited.

Note: If you code a call to locateFirst() and a set of calls to locateNext(), each

occurrence of an element will be visited exactly once in iteration order.

Precondition: The cursor must belong to the collection and must point to an element

of the collection.

Return Value: Returns True if an element was found.

 Exception: ICursorInvalidException

 locateNextElementWithKey
IBoolean locateNextElementWithKey (

Key const& key, ICursor& cursor) const;

Locates the next element in iteration order in the collection with the given key,

starting at the element next to the one pointed to by the given cursor. Sets the cursor

to point to the element in the collection. The cursor is invalidated if the end of the

collection is reached and no more occurrences of such an element are left to be

visited.

Note: If you code a call to locateFirst() and a set of calls to

locateNextElementWithKey(), each occurrence of an element will be visited exactly

once in iteration order.

Preconditions: The cursor must belong to the collection and must point to an

element of the collection.

Return Value: Returns True if an element was found.

 Exception: ICursorInvalidException

120 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

locateOrAdd IBoolean locateOrAdd (Element const& element) ;

IBoolean locateOrAdd (Element const& element,
ICursor& cursor) ;

Locates an element in the collection that is equal to the given element. (See “locate”

on page 118 for details on locate().) If no such element is found, locateOrAdd()

adds the element as described in “add” on page 103. The cursor is set to the located

or added element.

Note: This method may be more efficient than using locate() followed by a

conditionally called add().

 Preconditions

¹ The cursor must belong to the collection.

¹ If the collection is a map or a sorted map and contains an element with the same

key as the given element, this element must be equal to the given element.

¹ The element or key must exist, or

(numberOfElements() < maxNumberOfElements()).

 Side Effects

¹ If the element was added, all cursors of this collection, except the given cursor,

become undefined.

¹ If the element was added, collection classes supporting Visual Builder send an

addedId notification.

Return Value: Returns True if the element was located. Returns False if the

element could not be located but had to be added.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

¹ IFullException, if the collection is bounded

¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

 Flat Collection Member Functions 121

Flat Collection Member Functions

 locateOrAddElementWithKey
IBoolean locateOrAddElementWithKey (

Element const& element) ;

IBoolean locateOrAddElementWithKey (
Element const& element; ICursor& cursor) ;

Locates an element in the collection with the given key as described for the

locateElementWithKey() function. If no such element exists,

locateOrAddElementWithKey() adds the element as described in “add” on page 103.

The cursor is set to the located or added element.

 Preconditions

¹ If the collection is bounded and an element with the given key is not already

contained, (numberOfElements() < maxNumberOfElements()).

¹ The cursor must belong to the collection.

 Side Effects

¹ If the element was added, all cursors of this collection, except the given cursor,

become undefined.

¹ If the element was added, collection classes supporting Visual Builder send an

addedId notification.

Return Value: Returns True if the element was located. Returns False if the

element could not be located but had to be added.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

¹ IFullException, if the collection is bounded

 locatePrevious
IBoolean locatePrevious (Element const& element,

ICursor& cursor) const;

Locates the previous element in iteration order that is equal to the given element,

beginning at the element previous to the one specified by the given cursor and

moving in reverse iteration order through the elements. Sets the cursor to the located

element, or invalidates the cursor if no such element exists.

Preconditions: The cursor must belong to the collection and must point to an

element of the collection.

122 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

Return Value: Returns True if an element was found.

 Exceptions: ICursorInvalidException

 maxNumberOfElements
INumber maxNumberOfElements () const;

Returns the maximum number of elements the collection can contain.

Precondition: The collection is bounded.

 Exceptions: INotBoundedException

newCursor Cursor* newCursor () const;

Creates a cursor for the collection and returns a pointer to the cursor. The cursor is

initially not valid.

 Exception: IOutOfMemory

 numberOfDifferentElements
INumber numberOfDifferentElements () const;

Returns the number of different elements in the collection.

 numberOfDifferentKeys
INumber numberOfDifferentKeys () const;

Returns the number of different keys in the collection.

 numberOfElements
INumber numberOfElements () const;

Returns the number of elements the collection contains.

 numberOfElementsWithKey
INumber numberOfElementsWithKey (

Key const& key) const;

Returns the number of elements in the collection with the given key.

 Flat Collection Member Functions 123

Flat Collection Member Functions

 numberOfOccurrences
INumber numberOfOccurrences (

Element const& element) const;

Returns the number of occurrences of the given element in the collection.

pop void pop () ;

void pop (Element& element) ;

Copies the last element of the collection to the given element, and removes it from

the collection.

Precondition: The collection must not be empty.

 Side Effects

¹ All cursors of this collection become undefined.

¹ If the element was removed from the collection, collection classes supporting

Visual Builder send a removedId notification.

 Exception: IEmptyException

push void push (Element const& element) ;

void push (Element const& element,
ICursor& cursor) ;

Adds the element to the collection as the last element (as defined for “add” on

page 103), and sets the cursor to the added element.

 Preconditions

¹ The cursor must belong to the collection.

¹ If the collection is bounded, (numberOfElements() < maxNumberOfElements()).

 Side Effects

¹ All cursors of this collection, except the given cursor, become undefined.

¹ If the element was added to the collection, collection classes supporting Visual

Builder send an addedId notification.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

¹ IFullException, if the collection is bounded

124 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

remove IBoolean remove (Element const& element) ;

Removes an element in the collection that is equal to the given element. If no such

element exists, the collection remains unchanged. In collections with nonunique

elements, an arbitrary occurrence of the given element will be removed. Element

destructors are called as described in “removeAt” on page 126.

 Side Effects

¹ If an element was removed, all cursors of this collection become undefined.

¹ If an element was removed, collection classes supporting Visual Builder send a

removedId notification.

Return Value: Returns True if an element was removed.

removeAll void removeAll () ;

Removes all elements from the collection. Element destructors are called as

described in “removeAt” on page 126.

 Side Effects

¹ All cursors of this collection become undefined.

¹ Collection classes supporting Visual Builder send a modifiedId notification.

removeAll INumber removeAll (
IBoolean (*property) (Element const&, void*),
void* additionalArgument = 0) ;

Removes all elements from this collection for which the given property function

returns True. Additional arguments can be passed to the given property function

using additionalArgument. The additional argument defaults to zero if no additional

argument is given. Element destructors are called as described in “removeAt” on

page 126.

 Side Effects

¹ If any elements were removed, all cursors of this collection become undefined.

¹ If any elements were removed, collection classes supporting Visual Builder send

a modifiedId notification.

Return Value: The number of elements removed.

 Flat Collection Member Functions 125

Flat Collection Member Functions

 removeAllElementsWithKey
INumber removeAllElementsWithKey (

Key const& key) ;

Removes all elements from the collection with the same key as the given key.

Element destructors are called as described in “removeAt.”

 Side Effects

¹ If any elements were removed, all cursors of this collection become undefined.

¹ If any elements were removed, collection classes supporting Visual Builder send

a removedId notification.

Return Value: The number of elements removed.

 removeAllOccurrences
INumber removeAllOccurrences (Element const& element) ;

Removes all elements from the collection that are equal to the given element, and

returns the number of elements removed. Element destructors are called as described

in “removeAt.”

 Side Effects

¹ If any elements were removed, all cursors of this collection become undefined.

¹ If any elements were removed, collection classes supporting Visual Builder send

a modifiedId notification.

removeAt void removeAt (ICursor& cursor) ;

Removes the element pointed to by the given cursor. The given cursor is invalidated.

Note: It is undefined whether the destructor for the removed element is called or

whether the element will only be destructed with the collection destructor. For

example, in a tabular implementation, a destructor will only be called when the whole

collection is destructed, not when a single element is removed.

Preconditions: The cursor must belong to the collection and must point to an

element of the collection.

 Side Effects

¹ All cursors of this collection, except the given cursor, become undefined.

¹ If an element was removed, collection classes supporting Visual Builder send a

removedId notification.

126 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

 Exception: ICursorInvalidException

 removeAtPosition
void removeAtPosition (IPosition position) ;

Removes the element from the collection that is at the given position. Element

destructors are called as described in “removeAt” on page 126.

The first element of the collection has position 1.

Precondition: Position must be a valid position in the collection; that is,

(1 ≤ position ≤ numberOfElements()).

 Side Effects

¹ All cursors of this collection become undefined.

¹ Collection classes supporting Visual Builder send a removedId notification.

 Exception: IPositionInvalidException

 removeElementWithKey
IBoolean removeElementWithKey (Key const& key) ;

Removes an element from the collection with the same key as the given key. If no

such element exists, the collection remains unchanged. In collections with nonunique

elements, an arbitrary occurrence of such an element will be removed. Element

destructors are called as described in “removeAt” on page 126.

 Side Effects

¹ If an element was removed, all cursors of this collection become undefined.

¹ If an element was removed, collection classes supporting Visual Builder send a

removedId notification.

Return Value: Returns True if an element was removed.

removeFirst void removeFirst () ;

Removes the first element from the collection. Element destructors are called as

described in “removeAt” on page 126.

Precondition: The collection must not be empty.

 Flat Collection Member Functions 127

Flat Collection Member Functions

 Side Effects

¹ All cursors of this collection become undefined.

¹ If an element was removed, collection classes supporting Visual Builder send a

removedId notification.

 Exception: IEmptyException

removeLast void removeLast () ;

Removes the last element from the collection. Element destructors are called as

described in “removeAt” on page 126.

Precondition: The collection must not be empty.

 Side Effects

¹ All cursors of this collection become undefined.

¹ If an element was removed, collection classes supporting Visual Builder send a

removedId notification.

 Exception: IEmptyException

replaceAt void replaceAt (ICursor const& cursor,
Element const& element) ;

Replaces the element pointed to by the cursor with the given element.

 Preconditions

¹ The cursor must belong to the collection and must point to an element of the

collection.

¹ The given element must have the same positioning property as the replaced

element.

Side Effect: Collection classes supporting Visual Builder send a replacedId

notification.

 Exceptions

 ¹ ICursorInvalidException

 ¹ IInvalidReplacementException

128 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

 replaceElementWithKey
IBoolean replaceElementWithKey (Element const& element) ;

IBoolean replaceElementWithKey (Element const& element,
ICursor& cursor) ;

Replaces an element with the same key as the given element by the given element,

and sets the cursor to this element. If no such element exists, it invalidates the

cursor. In collections with nonunique elements, an arbitrary occurrence of such an

element will be replaced.

Precondition: The cursor must belong to the collection.

Side Effect: Collection classes supporting Visual Builder send a replacedId

notification.

Return Value: Returns True if an element was replaced.

 Exceptions: ICursorInvalidException

setToFirst IBoolean setToFirst (ICursor& cursor) const;

Sets the cursor to the first element of the collection in iteration order. If the

collection is empty (if no first element exists), it invalidates the given cursor.

Precondition: The cursor must belong to the collection.

Return Value: Returns True if the collection is not empty.

 Exception: ICursorInvalidException

setToLast IBoolean setToLast (ICursor& cursor) const;

Sets the cursor to the last element of the collection in iteration order. If the collection

is empty (if no last element exists), the given cursor is no longer valid.

Precondition: The cursor must belong to the collection.

Return Value: Returns True if the collection is not empty.

 Exceptions: ICursorInvalidException

 Flat Collection Member Functions 129

Flat Collection Member Functions

setToNext IBoolean setToNext (ICursor& cursor) const;

Sets the cursor to the next element in the collection in iteration order. If no more

elements are left to be visited, the given cursor will no longer be valid.

Precondition: The cursor must belong to the collection and must point to an

element.

Return Value: Returns True if there is a next element.

 Exceptions: ICursorInvalidException

 setToNextDifferentElement
IBoolean setToNextDifferentElement (

ICursor& cursor) const;

Sets the cursor to the next element in iteration order in the collection that is different

from the element pointed to by the given cursor. If no more elements are left to be

visited, the given cursor will no longer be valid.

Precondition: The cursor must belong to the collection and must point to an element

of the collection.

Return Value: Returns True if a subsequent element was found that is different.

 Exception: ICursorInvalidException

 setToNextWithDifferentKey
IBoolean setToNextWithDifferentKey (ICursor& cursor) const;

Sets the cursor to the next element in the collection in iteration order with a key

different from the key of the element pointed to by the given cursor. If no such

element exists, the given cursor is no longer valid.

Preconditions: The cursor must belong to the collection and must point to an

element of the collection.

Return Value: Returns True if a subsequent element was found whose key is

different from the current key.

 Exception: ICursorInvalidException

130 VisualAge C++ Open Class Library Reference

Flat Collection Member Functions

 setToPosition
void setToPosition (IPosition position,

ICursor& cursor) const;

Sets the cursor to the element at the given position. Position 1 specifies the first

element.

 Precondition

¹ The cursor must belong to the collection.

¹ Position must be a valid position in the collection; that is,

(1 ≤ position ≤ numberOfElements()).

 Exceptions

 ¹ ICursorInvalidException

 ¹ IPositionInvalidException

 setToPrevious
IBoolean setToPrevious (ICursor& cursor) const;

Sets the cursor to the previous element in iteration order, or invalidates the cursor if

no such element exists.

Preconditions: The cursor must belong to the collection and must point to an

element of the collection.

Return Value: Returns True if a previous element exists.

 Exception: ICursorInvalidException

sort void sort (long (*comparisonFunction)
(Element const& element1, Element const& element2));

Sorts the collection so that the elements occur in ascending order. The relation of

two elements is defined by the comparisonFunction, which you provide.

Note: The comparisonFunction must deliver a result according to the following rules:

>0 if (element1 > element2)

0 if (element1 == element2)

<0 if (element1 < element2)

 Side Effects

¹ All cursors of this collection become undefined.

¹ Collection classes supporting Visual Builder send a modifiedId notification.

 Flat Collection Member Functions 131

Flat Collection Member Functions

top Element const& top () const;

Returns a reference to the last element of the collection.

Precondition: The collection must not be empty.

 Exception: IEmptyException

unionWith void unionWith (
CLASS_NAME const& collection) ;

Makes the collection the union of the collection and the given collection. The union

of A and B is the set of elements that are members of A or B or both.

The following rule applies for bags with duplicate elements: If bag P contains the

element X m times and bag Q contains the element X n times, the union of P and Q

contains the element X m+n times.

Preconditions: Because the elements from the given collection are added to the

collection one by one, the following preconditions are tested for each individual add

operation :

¹ If the collection is bounded and unique, the element or key must exist or

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is bounded and nonunique,

(numberOfElements() < maxNumberOfElements()).

¹ If the collection is a map or a sorted map and contains an element with the same

key as the given element, this element must be equal to the given element.

 Side Effects

¹ If any elements were added to the collection, all cursors of this collection become

undefined.

¹ Collection classes supporting Visual Builder send a modifiedId notification.

 Exceptions

 ¹ IOutOfMemory

¹ IFullException, if the collection is bounded

¹ IKeyAlreadyExistsException, if the collection is a map or a sorted map

132 VisualAge C++ Open Class Library Reference

Bag

Bag

A bag is an unordered collection of zero or more elements with no key. Multiple

elements are supported. A request to add an element that already exists is not

ignored.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a bag and its relationship to other flat collections.

An example of using a bag is a program for entering observations on species of

plants and animals found in a river. Each time you spot a plant or animal in the

river, you enter the name of the species into the collection. If you spot a species

twice during an observation period, the species is added twice, because a bag supports

multiple elements. You can locate the name of a species that you have observed, and

you can determine the number of observations of that species, but you cannot sort the

collection by species, because a bag is an unordered collection. If you want to sort

the elements of a bag, use a sorted bag instead.

The following rule applies for duplicates: If bag P contains the element X m times

and bag Q contains the element X n times, then the union of P and Q contains the

element X m+n times, the intersection of P and Q contains the element X MIN(m,n)

times, and the difference of P and Q contains the element X m-n times if m is > n,

and zero times if m is ≤ n.

Derivation Collection

 Equality Collection

 Bag

Variants and

Header Files

IBag, the first class in the table below, is the default implementation variant. If

you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivbag.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 133

Bag

Members All member functions of flat collections are described in “Introduction to Flat

Collections” on page 97. The following members are provided for bag:

Class Name Header File Implementation

Variant

IBag ibag.h AVL tree
IGBag ibag.h AVL tree

IBagOnBSTKeySortedSet ibagbst.h B* tree
IGBagOnBSTKeySortedSet ibagbst.h B* tree

IBagOnSortedLinkedSequence ibagsls.h Linked Sequence
IGBagOnSortedLinkedSequence ibagsls.h Linked Sequence

IBagOnSortedTabularSequence ibagsts.h Tabular Sequence
IGBagOnSortedTabularSequence ibagsts.h Tabular Sequence

IBagOnSortedDilutedSequence ibagsds.h Diluted Sequence
IGBagOnSortedDilutedSequence ibagsds.h Diluted Sequence

IBagOnHashKeySet ibaghks.h Hash Table
IGBagOnHashKeySet ibaghks.h Hash Table

Method Page Method Page

Constructor 101 isEmpty 117

Copy Constructor 101 isFull 118

Destructor 101 locate 118

operator!= 102 locateNext 120

operator= 102 locateOrAdd 121

operator== 102 maxNumberOfElements 123

add 103 newCursor 123

addAllFrom 104 numberOfDifferentElements 123

addDifference 107 numberOfElements 123

addIntersection 108 numberOfOccurrences 124

addUnion 110 remove 125

allElementsDo 110 removeAllOccurrences 126

anyElement 112 removeAll 125

contains 113 removeAt 126

containsAllFrom 113 replaceAt 128

differenceWith 114 setToFirst 129

elementAt 115 setToNext 130

intersectionWith 117 setToNextDifferentElement 130

isBounded 117 unionWith 132

134 VisualAge C++ Open Class Library Reference

Bag

Bag also defines a cursor that inherits from IElementCursor. The members for
IElementCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Bag
IBag <Element>
IGBag <Element, ECOps>

The default implementation of the class IBag requires the following element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Bag on B* Key Sorted Set
IBagOnBSTKeySortedSet <Element>
IGBagOnBSTKeySortedSet <Element, ECOps>

The default implementation of the class IBagOnBSTKeySortedSet requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Bag on Sorted Linked Sequence
IBagOnSortedLinkedSequence <Element>
IGBagOnSortedLinkedSequence <Element, ECOps>

The implementation of the class IBagOnSortedLinkedSequence requires the following

element functions:

 Bag 135

Bag

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Bag on Sorted Tabular Sequence
IBagOnSortedTabularSequence <Element>
IGBagOnSortedTabularSequence <Element, ECOps>

The implementation of the class IBagOnSortedTabularSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Bag on Sorted Diluted Sequence
IBagOnSortedDilutedSequence <Element>
IGBagOnSortedDilutedSequence <Element, ECOps>

The implementation of the class IBagOnSortedDilutedSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

136 VisualAge C++ Open Class Library Reference

Bag

Bag on Hash Key Set
IBagOnHashKeySet <Element>
IGBagOnHashKeySet <Element, EHOps>

The implementation of the class IBagOnHashKeySet requires the following element

functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Hash function

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IABag, which is

found in the iabag.h header file, or the corresponding reference class, IRBag, which is

found in the irbag.h header file. See Chapter 11, “Polymorphic Use of

Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IABag <Element>
IRBag <Element, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

 Bag 137

Bag

138 VisualAge C++ Open Class Library Reference

Deque

Deque

A deque or double-ended queue is a sequence with restricted access. It is an ordered

collection of elements with no key and no element equality. The elements are

arranged so that each collection has a first and a last element, each element except the

last has a next element, and each element but the first has a previous element. You

can only add or remove the first or last element.

The type and value of the elements are irrelevant, and have no effect on the behavior

of the collection.

An example of using a deque is a program for managing a lettuce warehouse. Cases

of lettuce arriving into the warehouse are registered at one end of the queue (the

“fresh” end) by the receiving department. The shipping department reads the other

end of the queue (the “old” end) to determine which case of lettuce to ship next.

However, if an order comes in for very fresh lettuce, which is sold at a premium, the

shipping department reads the “fresh” end of the queue to select the freshest case of

lettuce available.

Derivation Collection

 Ordered Collection

 Sequential Collection

 Sequence

 Deque

Note that deque is based on sequence but is not actually derived from it or from the

other classes shown above. See “Restricted Access” in the Open Class Library

User's Guide for further details.

Variants and

Header Files

IDeque, the first class in the table below, is the default implementation variant. If

you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivdeque.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 139

Deque

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for deque:

Class Name Header File Implementation Variant

IDeque ideque.h Linked sequence
IGDeque ideque.h Linked sequence

IDequeOnTabularSequence idquts.h Tabular sequence
IGDequeOnTabularSequence idquts.h Tabular sequence

IDequeOnDilutedSequence idquds.h Diluted sequence
IGDequeOnDilutedSequence idquds.h Diluted sequence

Method Page Method Page

Constructor 101 isFirst 117

Copy Constructor 101 isFull 118

Destructor 101 isLast 118

operator= 102 lastElement 118

add 103 maxNumberOfElements 123

addAllFrom 104 newCursor 123

addAsFirst 105 numberOfElements 123

addAsLast 105 removeAll 125

allElementsDo 110 removeFirst 127

anyElement 112 removeLast 128

compare 112 setToFirst 129

elementAt 115 setToLast 129

elementAtPosition 115 setToNext 130

firstElement 117 setToPosition 131

isBounded 117 setToPrevious 131

isEmpty 117

Deque also defines a cursor that inherits from IOrderedCursor. The members for
IOrderedCursor are described in “Cursor” on page 267.

140 VisualAge C++ Open Class Library Reference

Deque

Template Arguments and Required Functions

 Deque
IDeque <Element>
IGDeque <Element, StdOps>

The default implementation of the class IDeque requires the following element

functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

Deque on Tabular Sequence
IDequeOnTabularSequence <Element>
IGDequeOnTabularSequence <Element, StdOps>

The implementation of the class IDequeOnTabularSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

Deque on Diluted Sequence
IDequeOnDilutedSequence <Element>
IGDequeOnDilutedSequence <Element, StdOps>

The implementation of the class IDequeOnDilutedSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ copy constructor

 ¹ Assignment

 Deque 141

Deque

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IADeque, which is

found in the iadeque.h header file, or the corresponding reference class, IRDeque,

which is found in the irdeque.h header file. See Chapter 11, “Polymorphic Use

of Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IADeque <Element>
IRDeque <Element, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Deque

The following program uses the default deque class, IDeque, to create a deque. It

fills the deque with characters by adding them to the back end. The program then

removes the characters from alternating ends of the deque (beginning with the front

end) until the deque is empty.

The program uses the constant iterator class, IConstantIterator, when printing the

collection. It uses the addAsLast() function to fill the deque and the

numberOfElements() function to determine the deque's size. It uses the functions

firstElement(), removeFirst(), lastElement(), and removeLast() to empty the deque.

// letterdq.C - An example of using a Deque.

 #include <iostream.h>

 #include <ideque.h>
// Let's use the default deque

typedef IDeque <char> Deque;
// The deque requires iteration to be const

typedef IConstantIterator <char> CharIterator;

class Print : public CharIterator
 {
 public:

IBoolean applyTo(char const&c)
 {

cout << c;
 return True;
 }
 };

 /*---*\
| Test variables |

 ---/

char *String = "Teqikbonfxjmsoe aydg.o zlarv pu o wr cu h";

142 VisualAge C++ Open Class Library Reference

Deque

 /*---*\
| Main program |

 ---/
 int main()
 {
 Deque D;
 char C;

IBoolean ReadFront = True;

 int i;

// Put all characters in the deque.
// Then read it, changing the end to read from
// with every character read.

cout << endl
<< "Adding characters to the back end of the deque:" << endl;

for (i = 0; String[i] != 0; i ++) {
 D.addAsLast(String[i]);

cout << String[i];
 }

cout << endl << endl
<< "Current number of elements in the deque: "
<< D.numberOfElements() << endl;

cout << endl
<< "Contents of the deque:" << endl;

 Print Aprinter;
 D.allElementsDo(Aprinter);

cout << endl << endl
<< "Reading from the deque one element from front, one "
<< "from back, and so on:" << endl;

 while (!D.isEmpty())
 {

if (ReadFront) // Read from front of Deque
 {

C = D.firstElement(); // Get the character
D.removeFirst(); // Delete it from the Deque

 }
 else
 {

C = D.lastElement();
 D.removeLast();
 }

cout << C;

ReadFront = !ReadFront; // Switch to other end of Deque
 }

cout << endl;

 return(0);
 }

 Deque 143

Deque

The program produces the following output:

Adding characters to the back end of the deque:
Teqikbonfxjme vralz o.gdya eospu o wr cu h

Current number of elements in the deque: 43

Contents of the deque:
Teqikbonfxjme vralz o.gdya eospu o wr cu h

Reading from the deque one element from front, one from back, and so on:
The quick brown fox jumpes over a lazy dog.

144 VisualAge C++ Open Class Library Reference

Equality Sequence

Equality Sequence

An equality sequence is an ordered collection of elements. The elements are arranged

so that each collection has a first and a last element, each element except the last has

a next element, and each element but the first has a previous element. An equality

sequence supports element equality, which gives you the ability, for example, to

search for particular elements.

An example of using an equality sequence is a program that calculates members of

the Fibonacci sequence and places them in a collection. Multiple elements of the

same value are allowed. For example, the sequence begins with two instances of the

value 1. You can search for a given element, for example 8, and find out what

element follows it in the sequence. Element equality allows you to do this, using the

locate() and setToNext() functions.

Derivation Collection

 Equality Collection

 Sequential Collection

 Equality Sequence

Figure 7 in the Open Class Library User's Guide illustrates the properties of an

equality sequence and its relationship to other flat collections.

Variants and

Header Files

IEqualitySequence, the first class in the table below, is the default implementation

variant. If you want to use polymorphism, you can replace the following class

implementation variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the iveqseq.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 145

Equality Sequence

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for equality sequence:

Class Name Header

File

Implementation

Variant

IEqualitySequence ieqseq.h Linked sequence
IGEqualitySequence ieqseq.h Linked sequence

IEqualitySequenceOnTabularSequence ieqts.h Tabular sequence
IGEqualitySequenceOnTabularSequence ieqts.h Tabular sequence

IEqualitySequenceOnDilutedSequence ieqds.h Diluted sequence
IGEqualitySequenceOnDilutedSequence ieqds.h Diluted sequence

Method Page Method Page

Constructor 101 lastElement 118

Copy Constructor 101 locate 118

Destructor 101 locateFirst 119

operator!= 102 locateLast 119

operator= 102 locateNext 120

operator== 102 locateOrAdd 121

add 103 locatePrevious 122

addAllFrom 104 maxNumberOfElements 123

addAsFirst 105 newCursor 123

addAsLast 105 numberOfElements 123

addAsNext 106 numberOfOccurrences 124

addAsPrevious 106 remove 125

addAtPosition 107 removeAll 125

allElementsDo 110 removeAllOccurrences 126

anyElement 112 removeAt 126

compare 112 removeAtPosition 127

contains 113 removeFirst 127

containsAllFrom 113 removeLast 128

elementAt 115 replaceAt 128

elementAtPosition 115 setToFirst 129

firstElement 117 setToLast 129

isBounded 117 setToNext 130

isEmpty 117 setToPosition 131

isFirst 117 setToPrevious 131

isFull 118 sort 131

isLast 118

146 VisualAge C++ Open Class Library Reference

Equality Sequence

Equality sequence also defines a cursor that inherits from IOrderedCursor. The

members for IOrderedCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Equality Sequence
IEqualitySequence <Element>
IGEqualitySequence <Element, EOps>

The default implementation of IEqualitySequence requires the following element

functions:

Element Type

 ¹ Assignment

 ¹ Equality test

Equality Sequence on Tabular Sequence
IEqualitySequenceOnTabularSequence <Element>
IGEqualitySequenceOnTabularSequence <Element, EOps>

The implementation of the class IEqualitySequenceOnTabularSequence requires the

following element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

Equality Sequence on Diluted Sequence
IEqualitySequenceOnDilutedSequence <Element>
IGEqualitySequenceOnDilutedSequence <Element, EOps>

The implementation of the class IEqualitySequenceOnDilutedSequence requires the

following element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 Equality Sequence 147

Equality Sequence

 ¹ Assignment

 ¹ Equality test

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAEqSeq, which is

found in the iaeqseq.h header file, or the corresponding reference class, IREqSeq,

which is found in the ireqseq.h header file. See Chapter 11, “Polymorphic Use

of Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IAEqSequ <Element>
IREqSequ <Element, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

148 VisualAge C++ Open Class Library Reference

Heap

Heap

A heap is an unordered collection of zero or more elements with no key. Element

equality is not supported. Multiple elements are supported. The type and value of

the elements are irrelevant, and have no effect on the behavior of the heap.

You can compare using a heap collection to managing the scrap metal entering a

scrapyard. Pieces of scrap are placed in the heap in an arbitrary location, and an

element can be added multiple times (for example, the rear left fender from a

particular kind of car). When a customer requests a certain amount of scrap,

elements are removed from the heap in an arbitrary order until the required amount is

reached. You cannot search for a specific piece of scrap except by examining each

piece of scrap in the heap and manually comparing it to the piece you are looking for.

Figure 7 in the Open Class Library User's Guide illustrates the properties of a

heap and its relationship to other flat collections.

Derivation Collection

 Heap

Variants and

Header Files

IHeap, the first class in the table below, is the default implementation variant. If

you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivheap.h

header file instead of the header file that you would normally use without Visual

Builder.

Class Name Header File Implementation Variant

IHeap iheap.h Linked sequence
IGHeap iheap.h Linked sequence

IHeapOnTabularSequence iheapts.h Tabular sequence
IGHeapOnTabularSequence iheapts.h Tabular sequence

IHeapOnDilutedSequence iheapds.h Diluted sequence
IGHeapOnDilutedSequence iheapds.h Diluted sequence

 Copyright IBM Corp. 1993, 1995 149

Heap

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for heap:

Method Page Method Page

Constructor 101 isEmpty 117

Copy Constructor 101 isFull 118

Destructor 101 maxNumberOfElements 123

operator= 102 newCursor 123

add 103 numberOfElements 123

addAllFrom 104 removeAll 125

allElementsDo 110 removeAt 126

anyElement 112 replaceAt 128

elementAt 115 setToFirst 129

isBounded 117 setToNext 130

Heap also defines a cursor that inherits from IElementCursor. The members for
IElementCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Heap
IHeap <Element>
IGHeap <Element, StdOps>

The default implementation of IHeap requires the following element functions:

Element Type

 ¹ Copy constructor

 ¹ Assignment

Heap on Tabular Sequence
IHeapOnTabularSequence <Element>
IGHeapOnTabularSequence <Element, StdOps>

The implementation of the class IHeapOnTabularSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Assignment

150 VisualAge C++ Open Class Library Reference

Heap

Heap on Diluted Sequence
IHeapOnDilutedSequence <Element>
IGHeapOnDilutedSequence <Element, StdOps>

The implementation of the class IHeapOnDilutedSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAHeap, which is

found in the iaheap.h header file, or the corresponding reference class, IRHeap, which

is found in the irheap.h header file. See Chapter 11, “Polymorphic Use of

Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IAHeap <Element>
IRHeap <Element, ConcreteBase>

The concrete base class is one of the heap classes.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Heap

 See “Coding Example for Key Sorted Set” on page 176 for an example of using

a heap.

 Heap 151

Heap

152 VisualAge C++ Open Class Library Reference

Key Bag

Key Bag

A key bag is an unordered collection of zero or more elements that have a key.

Multiple elements are supported.

An example of using a key bag is a program that manages the distribution of

combination locks to members of a fitness club. The element key is the number that

is printed on the back of each combination lock. Each element also has data

members for the club member's name, member number, and so on. When you join

the club, you are given one of the available combination locks, and your name,

member number, and the number on the combination lock are entered into the

collection. Because a given number on a combination lock may appear on several

locks, the program allows the same lock number to be added to the collection

multiple times. When you return a lock because you are leaving the club, the

program finds each element whose key matches your lock's serial number, and deletes

one such element that has your name associated with it.

Figure 8 in the Open Class Library User's Guide illustrates the differences in

behavior between map, relation, key set, and key bag when identical elements and

elements with the same key are added.

Derivation Collection

 Key Collection

 Key Bag

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a key bag and its relationship to other flat collections.

Variants and

Header Files

IKeyBag, the first class in the table below, is the default implementation variant. If

you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivkeybag.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 153

Key Bag

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for key bag:

Class Name Header File Implementation Variant

IKeyBag ikeybag.h Hash table
IGKeyBag ikeybag.h Hash table
IHashKeyBag ihshkb.h Hash table
IGHashKeyBag ihshkb.h Hash table

Method Page Method Page

Constructor 101 locateElementWithKey 119

Copy Constructor 101 locateNextElementWithKey 120

Destructor 101 locateOrAddElementWithKey 122

operator= 102 maxNumberOfElements 123

add 103 newCursor 123

addAllFrom 104 numberOfDifferentKeys 123

addOrReplaceElementWithKey 109 numberOfElements 123

allElementsDo 110 numberOfElementsWithKey 123

anyElement 112 removeAll 125

containsAllKeysFrom 113 removeAllElementsWithKey 126

containsElementWithKey 113 removeAt 126

elementAt 115 removeElementWithKey 127

elementWithKey 115 replaceAt 128

isBounded 117 replaceElementWithKey 129

isEmpty 117 setToFirst 129

isFull 118 setToNext 130

key 118 setToNextWithDifferentKey 130

Key Bag also defines a cursor that inherits from IElementCursor. The members

for IElementCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Key Bag
IKeyBag <Element, Key>
IGKeyBag <Element, Key, KEHOps>

The default implementation of the class IKeyBag requires the following element and

key-type functions:

154 VisualAge C++ Open Class Library Reference

Key Bag

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

 ¹ Equality test

 ¹ Hash function

Hash Key Bag
IHashKeyBag <Element, Key>
IGHashKeyBag <Element, Key, KEHOps>

The implementation of the class IHashKeyBag requires the following element and

key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

 ¹ Equality test

 ¹ Hash function

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAKeyBag, which is

found in the iakeybag.h header file, or the corresponding reference class, IRKeyBag,

which is found in the irkeybag.h header file. See Chapter 11, “Polymorphic Use

of Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IAKeyBag <Element, Key>
IRKeyBag <Element, Key, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

 Key Bag 155

Key Bag

Coding Example for Key Bag

The following program uses the default key bag class, IKeyBag, to create a key bag

for storing observations made on animals. The key of the class is the name of the

animal. The program produces various reports regarding the observations. Then it

removes all the extinct animals, which are stored in a sequence, from the key bag.

The program uses the add() function to fill the key bag and the forCursor macro to

display the observations. It uses the following functions to produce the reports:

 ¹ numberOfElements()

 ¹ numberOfDifferentKeys()

 ¹ numberOfElementsWithKey()

 ¹ locateElementWithKey()

 ¹ setToNextElementWithKey()

 ¹ removeAllElementsWithKey()

 See Appendix A, “Header Files for Collection Class Library Coding Examples”

on page 575 for the code of the animal.h file.

// animals.C - An example of using a Key Bag
 #include <iostream.h>

// Class Animal:
 #include "animal.h"

// Let's use the default Key Bag:
 #include <ikeybag.h>

typedef IKeyBag<Animal, IString> Animals;

// For keys let's use the default Sequence:
 #include <iseq.h>

typedef ISequence<IString> Names;

 main() {

 Animals animals;
Animals::Cursor animalsCur1(animals), animalsCur2(animals);

 animals.add(Animal("bear", "heavy"));
 animals.add(Animal("bear", "strong"));
 animals.add(Animal("dinosaur", "heavy"));
 animals.add(Animal("dinosaur", "huge"));
 animals.add(Animal("dinosaur", "extinct"));
 animals.add(Animal("eagle", "black"));
 animals.add(Animal("eagle", "strong"));
 animals.add(Animal("lion", "dangerous"));
 animals.add(Animal("lion", "strong"));

animals.add(Animal("mammoth", "long haired"));
 animals.add(Animal("mammoth", "extinct"));

animals.add(Animal("sabre tooth tiger", "extinct"));
 animals.add(Animal("zebra", "striped"));

// Display all elements in animals:
cout << endl

<< "All our observations on animals:" << endl;
forCursor(animalsCur1) cout << " " << animalsCur1.element();

156 VisualAge C++ Open Class Library Reference

Key Bag

cout << endl << endl
<< "Number of observations on animals: "
<< animals.numberOfElements() << endl;

cout << endl
<< "Number of different animals: "
<< animals.numberOfDifferentKeys() << endl;

 Names namesOfExtinct(animals.numberOfDifferentKeys());
 Names::Cursor extinctCur1(namesOfExtinct);

 animalsCur1.setToFirst();
 do {

IString name = animalsCur1.element().name();

cout << endl
<< "We have " << animals.numberOfElementsWithKey(name)
<< " observations on " << name << ":" << endl;

// We need to use a separate cursor here
// because otherwise animalsCur1 would become
// invalid after last locateNextElement...()

 animals.locateElementWithKey(name, animalsCur2);
 do {

IString attribute = animalsCur2.element().attribute();
cout << " " << attribute << endl;
if (attribute == "extinct") namesOfExtinct.add(name);

} while (animals.locateNextElementWithKey(name, animalsCur2));

} while (animals.setToNextWithDifferentKey(animalsCur1));

// Remove all observations on extinct animals:
 forCursor(extinctCur1)
 animals.removeAllElementsWithKey(extinctCur1.element());

// Display all elements in animals:
cout << endl << endl

<< "After removing all observations on extinct animals:" << endl;
forCursor(animalsCur1) cout << " " << animalsCur1.element();

cout << endl
<< "Number of observations on animals: "
<< animals.numberOfElements() << endl;

cout << endl
<< "Number of different animals: "
<< animals.numberOfDifferentKeys() << endl;

 return 0;
 }

 Key Bag 157

Key Bag

The program produces the following output:

All our observations on animals:
The eagle is strong.
The eagle is black.
The bear is strong.
The bear is heavy.
The zebra is striped.
The mammoth is extinct.
The mammoth is long haired.
The lion is strong.
The lion is dangerous.
The dinosaur is extinct.
The dinosaur is huge.
The dinosaur is heavy.
The sabre tooth tiger is extinct.

Number of observations on animals: 13

Number of different animals: 7

We have 2 observations on eagle:
 strong
 black

We have 2 observations on bear:
 strong
 heavy

We have 1 observations on zebra:
 striped

We have 2 observations on mammoth:
 extinct
 long haired

We have 2 observations on lion:
 strong
 dangerous

We have 3 observations on dinosaur:
 extinct
 huge
 heavy

We have 1 observations on sabre tooth tiger:
 extinct

After removing all observations on extinct animals:
The eagle is strong.
The eagle is black.
The bear is strong.
The bear is heavy.
The zebra is striped.
The lion is strong.
The lion is dangerous.

Number of observations on animals: 7

Number of different animals: 4

158 VisualAge C++ Open Class Library Reference

Key Set

Key Set

A key set is an unordered collection of zero or more elements that have a key.

Element equality is not supported. Only unique elements are supported, in terms of

their key.

An example of using a key set is a program that allocates rooms to patrons checking

into a hotel. The room number serves as the element's key, and the patron's name is

a data member of the element. When you check in at the front desk, the clerk pulls a

room key from the board, and enters that key's number and your name into the

collection. When you return the key at check-out time, the record for that key is

removed from the collection. You cannot add an element to the collection that is

already present, because there is only one key for each room. If you attempt to add

an element that is already present, the add() function returns False to indicate that

the element was not added.

Figure 8 in the Open Class Library User's Guide illustrates the differences in

behavior between map, relation, key set, and key bag when identical elements and

elements with the same key are added.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a key set and its relationship to other flat collections.

Derivation Collection

 Key Collection

 Key Set

Variants and

Header Files

IKeySet, the first class in the table below, is the default implementation variant. If

you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivkeyset.h

header file instead of the header file that you would normally use without Visual

Builder.

Class Name Header File Implementation Variant

IKeySet ikeyset.h AVL tree
IGKeySet ikeyset.h AVL tree

IKeySetOnBSTKeySortedSet iksbst.h B* tree
IGKeySetOnBSTKeySortedSet iksbst.h B* tree

 Copyright IBM Corp. 1993, 1995 159

Key Set

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for key set:

Class Name Header File Implementation Variant

IHashKeySet ihshks.h Hash table
IGHashKeySet ihshks.h Hash table

IKeySetOnSortedLinkedSequence ikssls.h Linked sequence
IGKeySetOnSortedLinkedSequence ikssls.h Linked sequence

IKeySetOnSortedTabularSequence ikssts.h Tabular sequence
IGKeySetOnSortedTabularSequence ikssts.h Tabular sequence

IKeySetOnSortedDilutedSequence ikssds.h Diluted sequence
IGKeySetOnSortedDilutedSequence ikssds.h Diluted sequence

Method Page Method Page

Constructor 101 isFull 118

Copy Constructor 101 key 118

Destructor 101 locateElementWithKey 119

operator= 102 locateOrAddElementWithKey 122

add 103 maxNumberOfElements 123

addAllFrom 104 newCursor 123

addOrReplaceElementWithKey 109 numberOfElements 123

allElementsDo 110 removeAll 125

anyElement 112 removeAt 126

containsAllKeysFrom 113 removeElementWithKey 127

containsElementWithKey 113 replaceAt 128

elementAt 115 replaceElementWithKey 129

elementWithKey 115 setToFirst 129

isBounded 117 setToNext 130

isEmpty 117

Key set also defines a cursor that inherits from IElementCursor. The members

for IElementCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Key Set
IKeySet <Element, Key>
IGKeySet <Element, Key, KCOps>

The default implementation of the class IKeySet requires the following element and

key-type functions:

160 VisualAge C++ Open Class Library Reference

Key Set

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Key Set on B* Key Sorted Set
IKeySetOnBSTKeySortedSet <Element, Key>
IGKeySetOnBSTKeySortedSet <Element, Key, KCOps>

The implementation of the class IKeySetOnBSTKeySortedSet requires the following

element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Hash Key Set
IHashKeySet <Element, Key>
IGHashKeySet <Element, Key, KEHOps>

The implementation class IHashKeySet requires the following element and key-type

functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 Key Set 161

Key Set

Key Type

 ¹ Equality test

 ¹ Hash function

Key Set on Sorted Linked Sequence
IKeySetOnSortedLinkedSequence <Element, Key>
IGKeySetOnSortedLinkedSequence <Element, Key, KCOps>

The implementation of the class IKeySetOnSortedLinkedSequence requires the

following element and key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Key Set on Sorted Tabular Sequence
IKeySetOnSortedTabularSequence <Element, Key>
IGKeySetOnSortedTabularSequence <Element, Key, KCOps>

The implementation of the class IKeySetOnSortedTabularSequence requires the

following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

162 VisualAge C++ Open Class Library Reference

Key Set

Key Set on Sorted Diluted Sequence
IKeySetOnSortedDilutedSequence <Element, Key>
IGKeySetOnSortedDilutedSequence <Element, Key, KCOps>

The implementation of the class IKeySetOnSortedDilutedSequence requires the

following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAKeySet, which is

found in the iakeyset.h header file, or the corresponding reference class, IRKeySet,

which is found in the irkeyset.h header file. See Chapter 11, “Polymorphic Use

of Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IAKeySet <Element, Key>
IRKeySet <Element, Key, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Key Set

The following program implements a key set using the default class, IKeySet. The

program adds four elements to the key set and then removes one element by looking

for a key. If an exception occurs, it displays the exception name and description.

The program uses cursor iteration (the forCursor macro) to display the contents of the

collection. To add and remove elements, it uses the add() function and the

removeElementWithKey() function.

 Key Set 163

Key Set

 See Appendix A, “Header Files for Collection Class Library Coding Examples”

on page 575 for the code of the demoelem.h file.

// intkyset.C - An example of using a Key Set
 #include <iostream.h>
 #include <iglobals.h>
 #include <icursor.h>

 #include <ikeyset.h>
// Class DemoElement:

 #include "demoelem.h"

typedef IKeySet < DemoElement,int > TestKeySet;

ostream & operator<< (ostream & sout, TestKeySet const & t){
sout << t.numberOfElements() << " elements are in the set:\n";

TestKeySet::Cursor cursor (t);
 // forCursor(c)

// expands to
// for ((c).setToFirst (); (c).isValid (); (c).setToNext ())

 forCursor (cursor)
sout << " " << cursor.element() << "\n";

return sout << "\n";
 }

 main(){
 TestKeySet t;
 try {
 t.add(DemoElement(1,1));
 t.add(DemoElement(2,4711));
 t.add(DemoElement(3,1));
 t.add(DemoElement(4,443));

cout << t;

 t.removeElementWithKey (3);
cout << t;

 }
catch (IException & exception) {
cout << exception.name() << " : " << exception.text();

 }

 return 0;
 }

The program produces the following output:

4 elements are in the set:
 1,1
 2,4711
 3,1
 4,443

3 elements are in the set:
 1,1
 2,4711
 4,443

164 VisualAge C++ Open Class Library Reference

Key Sorted Bag

Key Sorted Bag

A key sorted bag is an ordered collection of zero or more elements that have a key.

Elements are sorted according to the value of their key field. Element equality is not

supported. Multiple elements are supported.

An example of using a key sorted bag is a program that maintains a list of families,

sorted by the number of family members in each family. The key is the number of

family members. You can add an element whose key is already in the collection

(because two families can have the same number of members), and you can generate

a list of families sorted by size. You cannot locate a family except by its key,

because a key sorted bag does not support element equality.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a key sorted bag and its relationship to other flat collections.

Derivation Collection

 Ordered Collection

 Key Collection Sorted Collection

Key Sorted Collection

Key Sorted Bag

Variants and

Header Files

IKeySortedBag, the first class in the table below, is the default implementation

variant. If you want to use polymorphism, you can replace the following class

implementation variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivksbag.h

header file instead of the header file that you would normally use without Visual

Builder.

Class Name Header File Implementation

Variant

IKeySortedBag iksbag.h Linked sequence
IGKeySortedBag iksbag.h Linked sequence

IKeySortedBagOnSortedTabularSequence iksbsts.h Tabular sequence
IGKeySortedBagOnSortedTabularSequence iksbsts.h Tabular sequence

IKeySortedBagOnSortedDilutedSequence iksbsds.h Diluted sequence
IGKeySortedBagOnSortedDilutedSequence iksbsds.h Diluted sequence

 Copyright IBM Corp. 1993, 1995 165

Key Sorted Bag

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for key sorted bag:

Method Page Method Page

Constructor 101 locateElementWithKey 119

Copy Constructor 101 locateNextElementWithKey 120

Destructor 101 locateOrAddElementWithKey 122

operator= 102 maxNumberOfElements 123

add 103 newCursor 123

addAllFrom 104 numberOfDifferentKeys 123

addOrReplaceElementWithKey 109 numberOfElements 123

allElementsDo 110 numberOfElementsWithKey 123

anyElement 112 removeAll 125

compare 112 removeAllElementsWithKey 126

containsAllKeysFrom 113 removeAt 126

containsElementWithKey 113 removeAtPosition 127

elementAt 115 removeElementWithKey 127

elementAtPosition 115 removeFirst 127

elementWithKey 115 removeLast 128

firstElement 117 replaceAt 128

isBounded 117 replaceElementWithKey 129

isEmpty 117 setToFirst 129

isFirst 117 setToLast 129

isFull 118 setToNext 130

isLast 118 setToNextWithDifferentKey 130

key 118 setToPosition 131

lastElement 118 setToPrevious 131

Key sorted bag also defines a cursor that inherits from IOrderedCursor. The

members for IOrderedCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

Key Sorted Bag
IKeySortedBag <Element, Key>
IGKeySortedBag <Element, Key, KCOps>

The implementation of the class IKeySortedBag requires the following element and

key-type functions:

166 VisualAge C++ Open Class Library Reference

Key Sorted Bag

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Key Sorted Bag on Tabular Sequence
IKeySortedBagOnTabularSequence <Element, Key>
IGKeySortedBagOnTabularSequence <Element, Key, KCOps>

The implementation of the class IKeySortedBagOnTabularSequence requires the

following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Key Sorted Bag on Diluted Sequence
IKeySortedBagOnDilutedSequence <Element, Key>
IGKeySortedBagOnDilutedSequence <Element, Key, KCOps>

The implementation of the class IKeySortedBagOnDilutedSequence requires the

following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 Key Sorted Bag 167

Key Sorted Bag

Key Type

Ordering relation

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAKeySortedBag,

which is found in the iaksbag.h header file, or the corresponding reference class,

IRKeySortedBag, which is found in the irksbag.h header file. See Chapter 11,

“Polymorphic Use of Collections” in the Open Class Library User's Guide for further

information.

Template Arguments and Required Functions
IAKSBag <Element, Key>
IRKSBag <Element, Key, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Key Sorted Bag

The following program illustrates the use of a key sorted bag. The program

determines the number of words that have the same length in a phrase. It stores the

words of the phrase in a key sorted bag that it implements using the default class,

IKeySortedBag. The program makes the key the length of the word. Because of the

properties of a key sorted bag, it sorts the words by their length (the key), and it

stores all duplicate words.

The program determines the number of different word lengths using the

numberOfDifferentKeys() function. It uses the numberOfElementsWithKey() function

and the setToNextWithDifferentKey() function to iterate through the collection and

count the number of words with the same length.

 See Appendix A, “Header Files for Collection Class Library Coding Examples”

on page 575 for the code of the toyword.h file.

168 VisualAge C++ Open Class Library Reference

Key Sorted Bag

// wordbag.C - An example of using a Key Sorted Bag
 #include <iostream.h>

// Class Word
 #include "toyword.h"

// Let's use the defaults:
 #include <iksbag.h>

typedef IKeySortedBag <Word, unsigned> WordBag;

 int main()
 {

IString phrase[] = {"people", "who", "live", "in", "glass",
"houses", "should", "not", "throw", "stones"};

const size_t phraseWords = sizeof(phrase) / sizeof(IString);

 WordBag wordbag(phraseWords);

for (int cnt=0; cnt < phraseWords; cnt++) {
unsigned keyValue = phrase[cnt].length();

 Word theWord(phrase[cnt],keyValue);
 wordbag.add (theWord);
 }

cout << "Contents of our WordBag sorted by number of letters:" << endl;

 WordBag::Cursor wordBagCursor(wordbag);
 forCursor(wordBagCursor)

cout << "WB: " << wordBagCursor.element().getWord() << endl;

cout << endl << "Our phrase has " << phraseWords << " words." << endl ;
cout << "In our WordBag are " << wordbag.numberOfElements()

<< " words." << endl << endl;

cout << "There are " << wordbag.numberOfDifferentKeys()
<< " different word lengths." << endl << endl;

 wordBagCursor.setToFirst();
 do {

unsigned letters = wordbag.key(wordBagCursor.element());
cout << "There are "

 << wordbag.numberOfElementsWithKey(letters)
<< " words with " << letters << " letters." << endl;

} while (wordbag.setToNextWithDifferentKey(wordBagCursor));

 return 0;
 }

 Key Sorted Bag 169

Key Sorted Bag

This program produces the following output:

Contents of our WordBag sorted by number of letters:
WB: in
WB: who
WB: not
WB: live
WB: glass
WB: throw
WB: people
WB: houses
WB: should
WB: stones

Our phrase has 10 words.
In our WordBag are 10 words.

There are 5 different word lengths.

There are 1 words with 2 letters.
There are 2 words with 3 letters.
There are 1 words with 4 letters.
There are 2 words with 5 letters.
There are 4 words with 6 letters.

170 VisualAge C++ Open Class Library Reference

Key Sorted Set

Key Sorted Set

A key sorted set is an ordered collection of zero or more elements that have a key.

Elements are sorted according to the value of their key field. Element equality is not

supported. Only elements with unique keys are supported. A request to add an

element whose key already exists is ignored.

An example of using a key sorted set is a program that keeps track of canceled credit

card numbers and the individuals to whom they are issued. Each card number occurs

only once, and the collection is sorted by card number. When a merchant enters a

customer's card number into a point-of-sale terminal, the collection is checked to see

if that card number is listed in the collection of canceled cards. If it is found, the

name of the individual is shown, and the merchant is given directions for contacting

the card company. If the card number is not found, the transaction can proceed

because the card is valid. A list of canceled cards is printed out each month, sorted

by card number, and distributed to all merchants who do not have an automatic

point-of-sale terminal installed.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a key sorted set and its relationship to other flat collections.

Derivation Collection

 Ordered Collection

 Key Collection Sorted Collection

Key Sorted Collection

Key Sorted Set

Variants and

Header Files

IKeySortedSet, the first class in the table below, is the default implementation

variant. If you want to use polymorphism, you can replace the following class

implementation variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivksset.h

header file instead of the header file that you would normally use without Visual

Builder.

Class Name Header File Implementation Variant

IKeySortedSet iksset.h AVL tree
IGKeySortedSet iksset.h AVL tree

IAVLKeySortedSet iavlkss.h AVL tree
IGAVLKeySortedSet iavlkss.h AVL tree

 Copyright IBM Corp. 1993, 1995 171

Key Sorted Set

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for key sorted set:

Class Name Header File Implementation Variant

IBSTKeySortedSet ibstkss.h B* tree
IGBSTKeySortedSet ibstkss.h B* tree

IKeySortedSetOnSortedLinkedSequence iksssls.h Linked sequence
IGKeySortedSetOnSortedLinkedSequence iksssls.h Linked sequence

IKeySortedSetOnSortedTabularSequence iksssts.h Tabular sequence
IGKeySortedSetOnSortedTabularSequence iksssts.h Tabular sequence

IKeySortedSetOnSortedDilutedSequence iksssds.h Diluted sequence
IGKeySortedSetOnSortedDilutedSequence iksssds.h Diluted sequence

Method Page Method Page

Constructor 101 key 118

Copy Constructor 101 lastElement 118

Destructor 101 locateElementWithKey 119

operator= 102 locateNextElementWithKey 120

add 103 locateOrAddElementWithKey 122

addAllFrom 104 maxNumberOfElements 123

addOrReplaceElementWithKey 109 newCursor 123

allElementsDo 110 numberOfElements 123

anyElement 112 removeAll 125

compare 112 removeAt 126

containsAllKeysFrom 113 removeAtPosition 127

containsElementWithKey 113 removeElementWithKey 127

elementAt 115 removeFirst 127

elementAtPosition 115 removeLast 128

elementWithKey 115 replaceAt 128

firstElement 117 replaceElementWithKey 129

isBounded 117 setToFirst 129

isEmpty 117 setToLast 129

isFirst 117 setToNext 130

isFull 118 setToPosition 131

isLast 118 setToPrevious 131

Key Sorted Set also defines a cursor that inherits from IOrderedCursor. The

members for IOrderedCursor are described in “Cursor” on page 267.

172 VisualAge C++ Open Class Library Reference

Key Sorted Set

Template Arguments and Required Functions

Key Sorted Set
IKeySortedSet <Element, Key>
IGKeySortedSet <Element, Key, KCOps>

The implementation of the class IKeySortedSet requires the following element and

key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

AVL Key Sorted Set
IAVLKeySortedSet <Element>
IGAVLKeySortedSet <Element, Key, KCOps>

The implementation of the class IAVLKeySortedSet requires the following element and

key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Assignment

 ¹ Destructor

 ¹ Key access

Key Type

Ordering relation

B* Key Sorted Set
IBSTKeySortedSet <Element, Key>
IBSTKeySortedSet <Element, Key, KCOps>

The implementation of the class IBSTKeySortedSet requires the following element and

key-type functions:

 Key Sorted Set 173

Key Sorted Set

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Key Sorted Set on Sorted Linked Sequence
IKeySortedSetOnSortedLinkedSequence <Element>
IGKeySortedSetOnSortedLinkedSequence <Element, Key, KCOps>

The implementation of the class IKeySortedSetOnSortedLinkedSequence requires the

following element and key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Key Sorted Set on Sorted Tabular Sequence
IKeySortedSetOnSortedTabularSequence <Element>
IGKeySortedSetOnSortedTabularSequence <Element, Key, KCOps>

The implementation of the class IKeySortedSetOnSortedTabularSequence requires the

following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

174 VisualAge C++ Open Class Library Reference

Key Sorted Set

Key Type

Ordering relation

Key Sorted Set on Sorted Diluted Sequence
IKeySortedSetOnSortedDilutedSequence <Element, Key>
IGKeySortedSetOnSortedDilutedSequence <Element, Key, KCOps>

The implementation of the class IKeySortedSetOnSortedDilutedSequence requires the

following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAKeySortedSet,

which is found in the iaksset.h header file, or the corresponding reference class,

IRKeySortedSet, which is found in the irksset.h header file. See Chapter 11,

“Polymorphic Use of Collections” in the Open Class Library User's Guide for further

information.

Template Arguments and Required Functions
IAKeySortedSet <Element, Key>
IRKeySortedSet <Element, Key, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

 Key Sorted Set 175

Key Sorted Set

Coding Example for Key Sorted Set

The following program uses the default classes for a key sorted set and a heap,

IKeySortedSet and IHeap, to track parcels for a delivery service. It uses a key sorted

set to record the parcels that are currently in circulation. The fast access of a sorted

collection is not necessary to keep track of the delivered parcels, so the program uses

a heap to keep track of them.

The parcel element contains three data members: one of type PlaceTime that stores

the origin time and place of the parcel, another of type PlaceTime that stores the

current time and place of the parcel, and one of type ToyString that stores the

destination.

The function update() adds parcels that have arrived at their destinations to the heap

of delivered parcels, and removes them from the key sorted set for circulating parcels.

The program uses the add() function to update and the removeAll() function to

remove elements from the key sorted set.

 See Appendix A, “Header Files for Collection Class Library Coding Examples”

on page 575 for the code of the parcel.h file.

// parcel.C - An example of using a Key Sorted Set and a Heap
 #include <iostream.h>

 #include "parcel.h"
// Let's use the default KeySorted Set:

 #include <iksset.h>
// Let's use the default Heap:

 #include <iheap.h>

typedef IKeySortedSet<Parcel, ToyString> ParcelSet;
 typedef IHeap <Parcel> ParcelHeap;

ostream& operator<<(ostream&, ParcelSet const&);
ostream& operator<<(ostream&, ParcelHeap const&);

void update(ParcelSet&, ParcelHeap&);

 main() {

 ParcelSet circulating;
 ParcelHeap delivered;

int today = 8;

176 VisualAge C++ Open Class Library Reference

Key Sorted Set

 circulating.add(Parcel("London", "Athens",
 today, "26LoAt"));
 circulating.add(Parcel("Amsterdam", "Toronto",

today += 2, "27AmTo"));
 circulating.add(Parcel("Washington", "Stockholm",

today += 5, "25WaSt"));
 circulating.add(Parcel("Dublin", "Kairo",

today += 1, "25DuKa"));
 update(circulating, delivered);

cout << "\nThe situation at start:\n";
cout << "Parcels in circulation:\n" << circulating;

 today ++;
 circulating.elementWithKey("27AmTo").arrivedAt(
 "Atlanta", today);
 circulating.elementWithKey("25WaSt").arrivedAt(
 "Amsterdam", today);
 circulating.elementWithKey("25DuKa").arrivedAt(
 "Paris", today);
 update(circulating, delivered);

cout << "\n\nThe situation at day " << today << ":\n";
cout << "Parcels in circulation:\n" << circulating;

today ++; // One day later ...
 circulating.elementWithKey("27AmTo").arrivedAt("Chicago", today);

// As in real life, one parcel gets lost:
 circulating.removeElementWithKey("26LoAt");
 update(circulating, delivered);

cout << "\n\nThe situation at day " << today << ":\n";
cout << "Parcels in circulation:\n" << circulating;

 today ++;
 circulating.elementWithKey("25WaSt").arrivedAt("Oslo", today);
 circulating.elementWithKey("25DuKa").arrivedAt("Kairo", today);

// New parcels are shipped.
circulating.add(Parcel("Dublin", "Rome", today, "27DuRo"));

// Let's try to add one with a key already there.
// The KeySsorted Set should ignore it:

circulating.add(Parcel("Nowhere", "Nirvana", today, "25WaSt"));
 update(circulating, delivered);

cout << "\n\nThe situation at day " << today << ":\n";
cout << "Parcels in circulation:\n" << circulating;
cout << "Parcels delivered:\n" << delivered;

// Now we make all parcels arrive today:
 today ++;

 ParcelSet::Cursor circulatingcursor(circulating);
 forCursor(circulatingcursor) {
 circulating.elementAt(circulatingcursor).wasDelivered(today);
 }
 update(circulating, delivered);

cout << "\n\nThe situation at day " << today << ":\n";
cout << "Parcels in circulation:\n" << circulating;
cout << "Parcels delivered:\n" << delivered;

 if (circulating.isEmpty())
cout << "\nAll parcels were delivered.\n";

 else
cout << "\nSomething very strange happened here.\n";

 return 0;
 }

 Key Sorted Set 177

Key Sorted Set

ostream& operator<<(ostream& os, ParcelSet const& parcels) {
 ParcelSet::Cursor pcursor(parcels);
 forCursor(pcursor) {

os << pcursor.element() << "\n";
 }
 return os;
 }

ostream& operator<<(ostream& os, ParcelHeap const& parcels) {
 ParcelHeap::Cursor pcursor(parcels);
 forCursor(pcursor) {

os << pcursor.element() << "\n";
 }
 return os;
 }

Boolean wasDelivered(Parcel const& p, void* dp) {
if (p.lastArrival().city() == p.destination()) {

 ((ParcelHeap*)dp)->add(p);
 return True;
 }
 else
 return False;
 }

void update(ParcelSet& p, ParcelHeap& d) {
 p.removeAll(wasDelivered, &d);
 }

The program produces the following output:

The situation at start:
Parcels in circulation:
25DuKa: From Dublin(day 16) to Kairo

is at Dublin since day 16.
25WaSt: From Washington(day 15) to Stockholm

is at Washington since day 15.
26LoAt: From London(day 8) to Athens

is at London since day 8.
27AmTo: From Amsterdam(day 10) to Toronto

is at Amsterdam since day 10.

The situation at day 17:
Parcels in circulation:
25DuKa: From Dublin(day 16) to Kairo

is at Paris since day 17.
25WaSt: From Washington(day 15) to Stockholm

is at Amsterdam since day 17.
26LoAt: From London(day 8) to Athens

is at London since day 8.
27AmTo: From Amsterdam(day 10) to Toronto

is at Atlanta since day 17.

The situation at day 18:
Parcels in circulation:
25DuKa: From Dublin(day 16) to Kairo

is at Paris since day 17.
25WaSt: From Washington(day 15) to Stockholm

is at Amsterdam since day 17.
27AmTo: From Amsterdam(day 10) to Toronto

is at Chicago since day 18.

178 VisualAge C++ Open Class Library Reference

Key Sorted Set

The situation at day 19:
Parcels in circulation:
25WaSt: From Washington(day 15) to Stockholm

is at Oslo since day 19.
27AmTo: From Amsterdam(day 10) to Toronto

is at Chicago since day 18.
27DuRo: From Dublin(day 19) to Rome

is at Dublin since day 19.
Parcels delivered:
25DuKa: From Dublin(day 16) to Kairo

was delivered on day 19.

The situation at day 20:
Parcels in circulation:
Parcels delivered:
25DuKa: From Dublin(day 16) to Kairo

was delivered on day 19.
25WaSt: From Washington(day 15) to Stockholm

was delivered on day 20.
27AmTo: From Amsterdam(day 10) to Toronto

was delivered on day 20.
27DuRo: From Dublin(day 19) to Rome

was delivered on day 20.

All parcels were delivered.

 Key Sorted Set 179

Key Sorted Set

180 VisualAge C++ Open Class Library Reference

Map

Map

A map is an unordered collection of zero or more elements that have a key. Element

equality is supported and the values of the elements are relevant.

Only elements with unique keys are supported. A request to add an element whose

key already exists in another element of the collection causes an exception to be

thrown. A request to add a duplicate element is ignored.

An example of using a map is a program that translates integer values between the

ranges of 0 and 20 to their written equivalents, or between written numbers and their

numeric values. Two maps are created, one with the integer values as keys, one with

the written equivalents as keys. You can enter a number, and that number is used as

a key to locate the written equivalent. You can enter a written equivalent of a

number, and that text is used as a key to locate the value. A given key always

matches only one element. You cannot add an element with a key of 1 or “one” if

that element is already present in the collection.

Figure 8 in the Open Class Library User's Guide illustrates the differences in

behavior between map, relation, key set, and key bag when identical elements and

elements with the same key are added.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a map and its relationship to other flat collections.

Derivation Collection

 Key Collection Equality Collection

Equality Key Collection

 Map

Variants and

Header Files

IMap, the first class in the table below, is the default implementation variant. If

you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivmap.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 181

Map

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for map:

Class Name Header File Implementation

Variant

IMap imap.h AVL tree
IGMap imap.h AVL tree

IMapOnBSTKeySortedSet imapbst.h B* tree
IGMapOnBSTKeySortedSet imapbst.h B* tree

IMapOnSortedLinkedSequence imapsls.h Linked sequence
IGMapOnSortedLinkedSequence imapsls.h Linked sequence

IMapOnSortedTabularSequence imapsts.h Tabular sequence
IGMapOnSortedTabularSequence imapsts.h Tabular sequence

IMapOnSortedDilutedSequence imapsds.h Diluted sequence
IGMapOnSortedDilutedSequence imapsds.h Diluted sequence

IMapOnHashKeySet imaphks.h Hash table
IGMapOnHashKeySet imaphks.h Hash table

Method Page Method Page

Constructor 101 elementAt 115

Copy Constructor 101 elementWithKey 115

Destructor 101 intersectionWith 117

operator!= 102 isBounded 117

operator= 102 isEmpty 117

operator== 102 isFull 118

add 103 key 118

addAllFrom 104 locate 118

addDifference 107 locateElementWithKey 119

addIntersection 108 locateOrAdd 121

addOrReplaceElementWithKey 109 locateOrAddElementWithKey 122

addUnion 110 maxNumberOfElements 123

allElementsDo 110 newCursor 123

anyElement 112 numberOfElements 123

contains 113 remove 125

containsAllFrom 113 removeAll 125

containsAllKeysFrom 113 removeAt 126

containsElementWithKey 113 removeElementWithKey 127

differenceWith 114 replaceAt 128

182 VisualAge C++ Open Class Library Reference

Map

Method Page Method Page

replaceElementWithKey 129 setToNext 130

setToFirst 129 unionWith 132

Map also defines a cursor that inherits from IElementCursor. The members for
IElementCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Map
IMap <Element, Key>
IGMap <Element, Key, EKCOps>

The default implementation of the class IMap requires the following element and

key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Key access

Key Type

Ordering relation

Map on B* Key Sorted Set
IMapOnBSTKeySortedSet <Element, Key>
IGMapOnBSTKeySortedSet <Element, Key, EKCOps>

The implementation of the class IMapOnBSTKeySortedSet requires the following

element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Key access

 Map 183

Map

Key Type

Ordering relation

Map on Sorted Linked Sequence
IMapOnSortedLinkedSequence <Element, Key>
IGMapOnSortedLinkedSequence <Element, Key, EKCOps>

The implementation of the class IMapOnSortedLinkedSequence requires the following

element and key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Key access

Key Type

Ordering relation

Map on Sorted Tabular Sequence
IMapOnSortedTabularSequence <Element, Key>
IGMapOnSortedTabularSequence <Element, Key, EKCOps>

The implementation of the class IMapOnSortedTabularSequence requires the following

element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Key access

Key Type

Ordering relation

184 VisualAge C++ Open Class Library Reference

Map

Map on Sorted Diluted Sequence
IMapOnSortedDilutedSequence <Element, Key>
IGMapOnSortedDilutedSequence <Element, Key, EKCOps>

The implementation of the class IMapOnSortedDilutedSequence requires the following

element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Key access

Key Type

Ordering relation

Map on Hash Key Set
IMapOnHashKeySet <Element, Key>
IGMapOnHashKeySet <Element, Key, EKEHOps>

The implementation of the class IMapOnHashKeySet requires the following element and

key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Key access

Key Type

 ¹ Equality test

 ¹ Hash function

 Map 185

Map

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAMap, which is

found in the iamap.h header file, or the corresponding reference class, IRMap, which is

found in the irmap.h header file. See Chapter 11, “Polymorphic Use of

Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IAMap <Element, Key>
IRMap <Element, Key, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Map

The following program translates a string from EBCDIC to ASCII and from ASCII to

EBCDIC. It uses two maps, one with the EBCDIC code as key (E2AMap) and one

with the ASCII code as key (A2EMap). It converts from EBCDIC to ASCII by finding

the element whose key matches the EBCDIC code in E2AMap (which has the EBCDIC

code as key) and taking the ASCII code information from that element. It converts

from ASCII to EBCDIC by finding the key that matches the ASCII code in A2EMap

(which has the ASCII code as key) and taking the EBCDIC code information for that

element.

The program uses the add() function to build the maps and the elementWithKey()

function to convert the characters.

 See Appendix A, “Header Files for Collection Class Library Coding Examples”

on page 575 for the code of the transelm.h file.

// transtab.C - An example of using a Map
 #include "transelm.h"

// Get the standard operation classes:
 #include <istdops.h>

 #include "trmapops.h"

// char const translationTable[256] =
 #include "xebc2asc.h"

186 VisualAge C++ Open Class Library Reference

Map

 /*---*\
| Now we define the two Map templates and two maps. |
| We want both of them to be based on the Hashtable KeySet. |

 ---/
 #include <imaphks.h>

 typedef IGMapOnHashKeySet
< TranslationElement, char, TranslationOpsE2A > TransE2AMap;

 typedef IGMapOnHashKeySet
< TranslationElement, char, TranslationOpsA2E > TransA2EMap;

void display(char*, char*);

int main(int argc, char* argv[]) {

 TransA2EMap A2EMap;
 TransE2AMap E2AMap;

 /*---*\
| Load the translation table into both maps. |
| The maps organize themselves according to the key |
| specification already given. |

 ---/
for (int i=0; i < 256; i++)

 {
 /* ascCode ebcCode */

TranslationElement te(translationTable[i], i);

 E2AMap.add(te);
 A2EMap.add(te);
 }

// What do we want to convert now?
 char* toConvert;

if (argc > 1) toConvert = argv[1];
else toConvert = "$7 (=Dollar seven)";

size_t textLength = strlen(toConvert) +1;

char* convertedToAsc = new char[textLength];
char* convertedToEbc = new char[textLength];

// Convert the strings in place, character by character
for (i=0; toConvert[i] != 0x00; i++) {

 convertedToAsc[i]
= E2AMap.elementWithKey(toConvert[i]).ascCode ();

 convertedToEbc[i]
= A2EMap.elementWithKey(toConvert[i]).ebcCode ();

 }

display("To convert", toConvert);
display("After EBCDIC-ASCII conversion", convertedToAsc);
display("After ASCII-EBCDIC conversion", convertedToEbc);

 delete[] convertedToAsc;
 delete[] convertedToEbc;

 return 0;
 }

 Map 187

Map

 #include <iostream.h>
 #include <iomanip.h>

void display (char* title, char* text) {
cout << endl << title << ':' << endl;
cout << " Text: '" << text << "'" << endl;
cout << " Hex: " << hex;
for (int i=0; text[i] != 0x00; i++) {

cout << (int)(unsigned) text[i] << " ";
 }

cout << dec << endl;
 }

The program produces the following output:

To convert:
Hex: 24 37 20 20 28 3d 44 6f 6c 6c 61 72 20 73 65 76 65 6e 29

After EBCDIC-ASCII conversion:
Hex: 86 4 81 81 89 15 eb 3f 25 25 2f 94 81 b0 dd fc dd 3e 91

After ASCII-EBCDIC conversion:
Hex: 5b f7 40 40 4d 7e c4 96 93 93 81 99 40 a2 85 a5 85 95 5d

188 VisualAge C++ Open Class Library Reference

Priority Queue

Priority Queue

A priority queue is a key sorted bag with restricted access. It is an ordered collection

of zero or more elements. Keys and multiple elements are supported. Element

equality is not supported.

When an element is added, it is placed in the queue according to its key value or

priority. The highest priority is indicated by the lowest key value. You can only

remove the element with the highest priority. Within the priority queue, elements are

sorted according to ascending key values, as in other key collections. You can only

remove the element with the lowest key value.

For elements with equal priority, the priority queue has a first-in, first-out behavior.

An example of a priority queue is a program used to assign priorities to service calls

in a heating repair firm. When a customer calls with a problem, a record with the

customer's name and the seriousness of the situation is placed in a priority queue.

When a service person becomes available, customers are chosen by the program

beginning with those whose situation is most severe. In this example, a serious

problem such as a nonfunctioning furnace would be indicated by a low value for the

priority, and a minor problem such as a noisy radiator would be indicated by a high

value for the priority.

Derivation Key Sorted Collection

Key Sorted Bag

 Priority Queue

Note that priority queue is based on key sorted bag but is not actually derived from it

or from the other classes shown above. The diagram does not show all bases of

priority queue. See Figure 2 on page 4 in the Open Class Library User's Guide for

a complete illustration. See “Restricted Access” in the Open Class Library

User's Guide for further details.

Variants and

Header Files

IPriorityQueue, the first class in the table below, is the default implementation

variant. If you want to use polymorphism, you can replace the following class

implementation variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivprioqu.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 189

Priority Queue

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for priority queue:

Class Name Header File Implementation Variant

IPriorityQueue iprioqu.h Linked sequence
IGPriorityQueue iprioqu.h Linked sequence

IPriorityQueueOnSortedTabularSequence ipqusts.h Tabular sequence
IGPriorityQueueOnSortedTabularSequence ipqusts.h Tabular sequence

IPriorityQueueOnSortedDilutedSequence ipqusds.h Diluted sequence
IGPriorityQueueOnSortedDilutedSequence ipqusds.h Diluted sequence

Method Page Method Page

Constructor 101 isFull 118

Copy Constructor 101 isLast 118

Destructor 101 key 118

operator= 102 lastElement 118

add 103 locateElementWithKey 119

addAllFrom 104 locateNextElementWithKey 120

allElementsDo 110 locateOrAddElementWithKey 122

anyElement 112 maxNumberOfElements 123

compare 112 newCursor 123

containsAllKeysFrom 113 numberOfDifferentKeys 123

containsElementWithKey 113 numberOfElements 123

dequeue 114 numberOfElementsWithKey 123

elementAt 115 removeAll 125

elementAtPosition 115 removeFirst 127

elementWithKey 115 setToFirst 129

enqueue 116 setToLast 129

firstElement 117 setToNext 130

isBounded 117 setToNextWithDifferentKey 130

isEmpty 117 setToPosition 131

isFirst 117 setToPrevious 131

Priority queue also defines a cursor that inherits from IOrderedCursor. The

members for IOrderedCursor are described in “Cursor” on page 267.

190 VisualAge C++ Open Class Library Reference

Priority Queue

Template Arguments and Required Functions

 Priority Queue
IPriorityQueue <Element, Key>
IGPriorityQueue <Element, Key, KCOps>

The implementation of the class IPriorityQueue requires the following element and

key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Priority Queue on Sorted Tabular Sequence
IPriorityQueueOnSortedTabularSequence <Element, Key>
IGPriorityQueueOnSortedTabularSequence <Element, Key, KCOps>

The implementation of the class IPriorityQueueOnSortedTabularSequence requires the

following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

 Priority Queue 191

Priority Queue

Priority Queue on Sorted Diluted Sequence
IPriorityQueueOnSortedDilutedSequence <Element, Key>
IGPriorityQueueOnSortedDilutedSequence <Element, Key, KCOps>

The implementation of the class IPriorityQueueOnSortedDilutedSequence requires the

following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

Key Type

Ordering relation

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAPriorityQueue,

which is found in the iaprioqu.h header file, or the corresponding reference class,

IRPriorityQueue, which is found in the irprioqu.h header file. See Chapter 11,

“Polymorphic Use of Collections” in the Open Class Library User's Guide for further

information.

Template Arguments and Required Functions
IAPriorityQueue <Element, Key>
IRPriorityQueue <Element, Key, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

192 VisualAge C++ Open Class Library Reference

Queue

Queue

A queue is a sequence with restricted access. It is an ordered collection of elements

with no key and no element equality. The elements are arranged so that each

collection has a first and a last element, each element except the last has a next

element, and each element but the first has a previous element. The type and value

of the elements are irrelevant, and have no effect on the behavior of the collection.

You can only add an element as the last element, and you can only remove the first

element. Consequently, the elements of a queue are in chronological order.

A queue is characterized by a first-in, first-out (FIFO) behavior.

An example of using a queue is a program that processes requests for parts at the

cash sales desk of a warehouse. A request for a part is added to the queue when the

customer's order is taken, and is removed from the queue when an order picker

receives the order form for the part. Using a queue collection in such an application

ensures that all orders for parts are processed on a first-come, first-served basis.

Derivation Collection

 Ordered Collection

 Sequential Collection

 Sequence

 Queue

Note that queue is based on sequence but is not actually derived from it or from the

other classes shown above. See “Restricted Access” in the Open Class Library

User's Guide for further details.

Variants and

Header Files

IQueue, the first class in the table below, is the default implementation variant. If

you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivqueue.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 193

Queue

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for queue:

Class Name Header File Implementation Variant

IQueue iqueue.h Linked sequence
IGQueue iqueue.h Linked sequence

IQueueOnTabularSequence iquets.h Tabular sequence
IGQueueOnTabularSequence iquets.h Tabular sequence

IQueueOnDilutedSequence iqueds.h Diluted sequence
IGQueueOnDilutedSequence iqueds.h Diluted sequence

Method Page Method Page

Constructor 101 isBounded 117

Copy Constructor 101 isEmpty 117

Destructor 101 isFirst 117

operator= 102 isFull 118

add 103 isLast 118

addAllFrom 104 lastElement 118

addAsLast 105 maxNumberOfElements 123

allElementsDo 110 newCursor 123

anyElement 112 numberOfElements 123

compare 112 removeAll 125

dequeue 114 removeFirst 127

elementAt 115 setToFirst 129

elementAtPosition 115 setToLast 129

enqueue 116 setToNext 130

firstElement 117 setToPosition 131

Queue also defines a cursor that inherits from IOrderedCursor. The members for
IOrderedCursor are described in “Cursor” on page 267.

194 VisualAge C++ Open Class Library Reference

Queue

Template Arguments and Required Functions

 Queue
IQueue <Element>
IGQueue <Element, StdOps>

The default implementation of the class IQueue requires the following element

functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

Queue on Tabular Sequence
IQueueOnTabularSequence <Element>
IGQueueOnTabularSequence <Element, StdOps>

The implementation of the class IDequeOnTabularSequence requires the following

element functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

Queue on Diluted Sequence
IQueueOnDilutedSequence <Element>
IGQueueOnDilutedSequence <Element, StdOps>

The implementation of the class IQueueOnDilutedSequence requires the following

element functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 Queue 195

Queue

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAQueue, which is

found in the iaqueue.h header file, or the corresponding reference class, IRQueue,

which is found in the irqueue.h header file. See Chapter 11, “Polymorphic Use

of Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IAQueue <Element>
IRQueue <Element, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

196 VisualAge C++ Open Class Library Reference

Relation

Relation

A relation is an unordered collection of zero or more elements that have a key.

Element equality is supported, and the values of the elements are relevant.

The keys of the elements are not unique. You can add an element whether or not

there is already an element in the collection with the same key.

Figure 8 in the Open Class Library User's Guide illustrates the differences in

behavior between map, relation, key set, and key bag when identical elements and

elements with the same key are added.

An example of using a relation is a program that maintains a list of all your relatives,

with an individual's relationship to you as the key. You can add an aunt, uncle,

grandmother, daughter, father-in-law, and so on. You can add an aunt even if an aunt

is already in the collection, because you can have several relatives who have the same

relationship to you. (For unique relationships such as mother or father, your program

would have to check the collection to make sure it did not already contain a family

member with that key, before adding the family member.) You can locate a member

of the family, but the family members are not in any particular order.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a relation and its relationship to other flat collections.

Derivation Collection

Key Collection Equality Collection

Equality Key Collection

 Relation

Variants and

Header Files

IRelation is the default implementation variant. IGRelation is the default

implementation with generic operations class. Both variants are declared in the

header file irel.h.

To use Visual Builder features with your collections, use IVRelation instead of

IRelation, and IVGRelation instead of IGRelation. Both variants are declared in the

header file ivrel.h.

 Copyright IBM Corp. 1993, 1995 197

Relation

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for relation:

Method Page Method Page

Constructor 101 isFull 118

Copy Constructor 101 key 118

Destructor 101 locate 118

operator!= 102 locateElementWithKey 119

operator= 102 locateNextElementWithKey 120

operator== 102 locateOrAdd 121

add 103 locateOrAddElementWithKey 122

addAllFrom 104 maxNumberOfElements 123

addDifference 107 newCursor 123

addIntersection 108 numberOfDifferentKeys 123

addOrReplaceElementWithKey 109 numberOfElements 123

addUnion 110 numberOfElementsWithKey 123

allElementsDo 110 remove 125

anyElement 112 removeAll 125

contains 113 removeAllElementsWithKey 126

containsAllFrom 113 removeAt 126

containsAllKeysFrom 113 removeElementWithKey 127

containsElementWithKey 113 replaceAt 128

differenceWith 114 replaceElementWithKey 129

elementAt 115 setToFirst 129

elementWithKey 115 setToNext 130

intersectionWith 117 setToNextWithDifferentKey 130

isBounded 117 unionWith 132

isEmpty 117

Relation also defines a cursor that inherits from IElementCursor. The members for

IElementCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

IRelation <Element, Key>
IGRelation <Element, Key, EKEHOps>

The default implementation of the class IRelation requires the following element

functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

198 VisualAge C++ Open Class Library Reference

Relation

 ¹ Key access

 ¹ Equality test

Key Type

 ¹ Equality test

 ¹ Hash function

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IARelation, which is

found in the iarel.h header file, or the corresponding reference class, IRRelation,

which is found in the irrel.h header file. See Chapter 11, “Polymorphic Use of

Collections” on page 143 in the Open Class Library User's Guide for further

information.

Template Arguments and Required Functions
IARelation <Element, Key>
IRRelation <Element, Key, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

 Relation 199

Relation

200 VisualAge C++ Open Class Library Reference

Sequence

Sequence

A sequence is an ordered collection of elements. The elements are arranged so that

each collection has a first and a last element, each element except the last has a next

element, and each element but the first has a previous element.

The type and value of the elements are irrelevant, and have no effect on the behavior

of the collection. Elements can be added and deleted from any position in the

collection. Elements can be retrieved or replaced. A sequence does not support

element equality or a key. If you require element equality for a sequence, you can

use an equality sequence. See “Equality Sequence” on page 145 for further

details.

An example of a sequence is a program that maintains a list of the words in a

paragraph. The order of the words is obviously important, and you can add or

remove words at a given position, but you cannot search for individual words except

by iterating through the collection and comparing each word to the word you are

searching for. You can add a word that is already present in the sequence, because a

given word may be used more than once in a paragraph.

Figure 7 in the Open Class Library User's Guide illustrates the properties of a

sequence and its relationship to other flat collections.

Derivation Collection

 Ordered Collection

 Sequential Collection

 Sequence

Variants and

Header Files

ISequence, the first class in the table below, is the default implementation variant.

If you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivseq.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 201

Sequence

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for sequence:

Class Name Header File Implementation Variant

ISequence iseq.h Linked sequence
IGSequence iseq.h Linked sequence
ILinkedSequence ilnseq.h Linked sequence
IGLinkedSequence ilnseq.h Linked sequence

ITabularSequence itbseq.h Tabular sequence
IGTabularSequence itbseq.h Tabular sequence

IDilutedSequence itdseq.h Diluted sequence
IGDilutedSequence itdseq.h Diluted sequence

Method Page Method Page

Constructor 101 isFirst 117

Copy Constructor 101 isFull 118

Destructor 101 isLast 118

operator= 102 lastElement 118

add 103 maxNumberOfElements 123

addAllFrom 104 newCursor 123

addAsFirst 105 numberOfElements 123

addAsLast 105 removeAll 125

addAsNext 106 removeAt 126

addAsPrevious 106 removeAtPosition 127

addAtPosition 107 removeFirst 127

allElementsDo 110 removeLast 128

anyElement 112 replaceAt 128

compare 112 setToFirst 129

elementAt 115 setToLast 129

elementAtPosition 115 setToNext 130

firstElement 117 setToPosition 131

isBounded 117 setToPrevious 131

isEmpty 117 sort 131

Sequence also defines a cursor that inherits from IOrderedCursor. The members

for IOrderedCursor are described in “Cursor” on page 267.

202 VisualAge C++ Open Class Library Reference

Sequence

Template Arguments and Required Functions

 Sequence
ISequence <Element>
IGSequence <Element, StdOps>

The default implementation of ISequence requires the following element functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 Linked Sequence
ILinkedSequence <Element>
IGLinkedSequence <Element, StdOps>

The implementation of the class ILinkedSequence requires the following element

functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 Tabular Sequence
ITabularSequence <Element>
IGTabularSequence <Element, StdOps>

The implementation of the class ITabularSequence requires the following element

functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 Sequence 203

Sequence

 Diluted Sequence
IDilutedSequence <Element>
IGDilutedSequence <Element, StdOps>

The implementation of the class IDilutedSequence requires the following element

functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IASequence, which is

found in the iaseq.h header file, or the corresponding reference class, IRSequence,

which is found in the irseq.h header file. See Chapter 11, “Polymorphic Use of

Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IASequence <Element>
IRSequence <Element, ConcreteBase>

The concrete base class is one of the sequence classes.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Sequence

The following program creates a sequence using the default sequence class,

ISequence, and adds a number of words to it. The program sorts the words in

ascending order and searches the sequence for the word “fox.” Finally, it prints the

word that is in position 9.

The program uses two types of iteration. It uses the iterator class, IIterator, when

printing the sequence, and it uses cursor iteration when searching for a word. With

the iterator object, the program uses the allElementsDo() function. With cursor

iteration, it uses the setToFirst(), isValid(), and setToNext() functions. It uses the

elementAt() and elementAtPosition() functions to find words in the sequence.

 See Appendix A, “Header Files for Collection Class Library Coding Examples”

on page 575 for the code of the toyword.h file.

204 VisualAge C++ Open Class Library Reference

Sequence

// wordseq.C - An example of using a Sequence
 #include <iostream.h>

// Get definition and declaration of class Word:
 #include "toyword.h"

// Define a compare function to be used for sort:
inline long wordCompare (Word const& w1, Word const& w2) {

return (w1.getWord() > w2.getWord());
 }

// We want to use the default Sequence called ISequence.
 #include <iseq.h>

typedef ISequence <Word> WordSeq;
typedef IIterator <Word> WordIter;

// Test variables to put into the Sequence.

IString wordArray[9] = {
"the", "quick", "brown", "fox", "jumps",

 "over", "a", "lazy", "dog"
 };

// Our Iterator class for use with allElementsDo().

// The alternative method of iteration, using a cursor, does
// not need such an iterator class.
class PrintClass : public WordIter

 {
 public:

IBoolean applyTo(Word &w)
 {

cout << endl << w.getWord(); // Print the string
 return(True);
 }
 };

// Main program
 int main() {
 WordSeq WL;
 WordSeq::Cursor cursor(WL);
 PrintClass Print;

 int i;

for (i = 0; i < 9; i ++) { // Put all strings into Sequence
Word aWord(wordArray[i]); // Fill object with right value
WL.addAsLast(aWord); // Add it to the Sequence at end

 }

cout << endl << "Sequence in initial order:" << endl;
 WL.allElementsDo(Print);

WL.sort(wordCompare); // Sort the Sequence ascending
cout << endl << endl << "Sequence in sorted order:" << endl;

 WL.allElementsDo(Print);

 Sequence 205

Sequence

// Use iteration via cursor now:

cout << endl << endl << "Look for \"fox\" in the Sequence:" << endl;
 for (cursor.setToFirst();

cursor.isValid() && (WL.elementAt(cursor).getWord() != "fox");
 cursor.setToNext());

if (WL.elementAt(cursor).getWord() != "fox") {
cout << endl << "The element was not found." << endl;

 }
 else {

cout << endl << " The element was found." << endl;
 }

cout << endl << "The element at position 9: "
 << WL.elementAtPosition(9).getWord()
 << endl;

 return(0);
 }

The program produces the following output:

Sequence in initial order:

the
quick
brown
fox
jumps
over
a
lazy
dog

Sequence in sorted order:

a
brown
dog
fox
jumps
lazy
over
quick
the

Look for "fox" in the Sequence:

 The element was found.

The element at position 9: the

206 VisualAge C++ Open Class Library Reference

Set

Set

A set is an unordered collection of zero or more elements with no key. Element

equality is supported, and the values of the elements are relevant.

Only unique elements are supported. A request to add an element that already exists

is ignored.

An example of a set is a program that creates a packing list for a box of free samples

to be sent to a warehouse customer. The program searches a database of in-stock

merchandise, and selects ten items at random whose price is below a threshold level.

Each item is then added to the set. The set does not allow an item to be added if it is

already present in the collection, ensuring that a customer does not get two samples

of a single product. The set is not sorted, and elements of the set cannot be located

by key.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a set and its relationship to other flat collections.

The set also offers typical set functions such as union, intersection, and difference.

Derivation Collection

 Equality Collection

 Set

Variants and

Header Files

ISet, the first class in the table below, is the default implementation variant. If

you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivset.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 207

Set

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for set:

Class Name Header File Implementation Variant

ISet iset.h AVL tree
IGSet iset.h AVL tree

ISetOnBSTKeySortedSet isetbst.h B* tree
IGSetOnBSTKeySortedSet isetbst.h B* tree

ISetOnSortedLinkedSequence isetsls.h Linked sequence
IGSetOnSortedLinkedSequence isetsls.h Linked sequence

ISetOnSortedTabularSequence isetsts.h Tabular sequence
IGSetOnSortedTabularSequence isetsts.h Tabular sequence

ISetOnSortedDilutedSequence isetsds.h Diluted sequence
IGSetOnSortedDilutedSequence isetsds.h Diluted sequence

ISetOnHashKeySet isethks.h Hash table
IGSetOnHashKeySet isethks.h Hash table

Method Page Method Page

Constructor 101 intersectionWith 117

Copy Constructor 101 isBounded 117

Destructor 101 isEmpty 117

operator!= 102 isFull 118

operator= 102 locate 118

operator== 102 locateOrAdd 121

add 103 maxNumberOfElements 123

addAllFrom 104 newCursor 123

addDifference 107 numberOfElements 123

addIntersection 108 remove 125

addUnion 110 removeAll 125

allElementsDo 110 removeAt 126

anyElement 112 replaceAt 128

contains 113 setToFirst 129

containsAllFrom 113 setToNext 130

differenceWith 114 unionWith 132

elementAt 115

Set also defines a cursor that inherits from IElementCursor. The members for
IElementCursor are described in “Cursor” on page 267.

208 VisualAge C++ Open Class Library Reference

Set

Template Arguments and Required Functions

 Set
ISet <Element>
IGSet <Element, ECOps>

The default implementation of the class ISet requires the following element functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Set on B* Key Sorted Set
ISetOnBSTKeySortedSet <Element>
IGSetOnBSTKeySortedSet <Element, ECOps>

The implementation of the class ISetOnBSTKeySortedSet requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Set on Sorted Linked Sequence
ISetOnSortedLinkedSequence <Element>
IGSetOnSortedLinkedSequence <Element, ECOps>

The implementation of the class ISetOnSortedLinkedSequence requires the following

element functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

 Set 209

Set

Set on Sorted Tabular Sequence
ISetOnSortedTabularSequence <Element>
IGSetOnSortedTabularSequence <Element, ECOps>

The implementation of the class ISetOnSortedTabularSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Set on Sorted Diluted Sequence
ISetOnSortedDilutedSequence <Element>
IGSetOnSortedDilutedSequence <Element, ECOps>

The implementation of the class ISetOnSortedDilutedSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Set on Hash Key Set
ISetOnHashKeySet <Element>
IGSetOnHashKeySet <Element, EHOps>

The implementation of the class ISetOnHashKeySet requires the following element

functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Hash function

210 VisualAge C++ Open Class Library Reference

Set

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IASet, which is

found in the iaset.h header file, or the corresponding reference class, IRSet, which is

found in the irset.h header file. See Chapter 11, “Polymorphic Use of

Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IASet <Element>
IRSet <Element, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Set

The follow program creates sets using the default class, ISet. The odd set contains

all odd numbers less than ten. The prime set contains all prime numbers less than

ten. The program creates a set, oddPrime, that contains all the prime numbers less

than ten that are odd, by using the intersection of odd and prime. It creates another

set, evenPrime, that contains all the prime numbers less than ten that are even, by

using the difference of prime and oddPrime.

When printing the sets, the program uses the iterator class, IIterator. It uses the

add() function to build the odd and prime sets. It uses the addIntersection() and

addDifference() functions to create the oddPrime and evenPrime sets, respectively.

// evenodd.C - An example of using a Set
 #include <iostream.h>

#include <iset.h> // Take the defaults for the Set and for
// the required functions for integer

typedef ISet <int> IntSet;

// For iteration we want to use an object of an iterator class
class PrintClass : public IIterator<int> {

 public:
virtual IBoolean applyTo(int& i)
{ cout << " " << i << " "; return True;}

 };

// Local prototype for the function to display an IntSet.
void List(char *, IntSet &);

// Main program
int main () {

IntSet odd, prime;
IntSet oddPrime, evenPrime;

int One = 1, Two = 2, Three = 3, Five = 5, Seven = 7, Nine = 9;

 Set 211

Set

// Fill odd set with odd integers < 10
odd.add(One);
odd.add(Three);
odd.add(Five);
odd.add(Seven);
odd.add(Nine);
List("Odds less than 10: ", odd);

// Fill prime set with primes < 10
prime.add(Two);
prime.add(Three);
prime.add(Five);
prime.add(Seven);
List("Primes less than 10: ", prime);

// Intersect 'Odd' and 'Prime' to give 'OddPrime'
oddPrime.addIntersection(odd, prime);
List("Odd primes less than 10: ", oddPrime);

// Subtract all 'Odd' from 'Prime' to give 'EvenPrime'
evenPrime.addDifference(prime, oddPrime);
List("Even primes less than 10: ", evenPrime);

 return(0);
 }

// Local function to display an IntSet.

void List(char *Message, IntSet &anIntSet) {
 PrintClass Print;

cout << Message;
 anIntSet.allElementsDo(Print);

cout << endl;
 }

The program produces the following output:

Odds less than 10: 1 3 5 7 9
Primes less than 10: 2 3 5 7
Odd primes less than 10: 3 5 7
Even primes less than 10: 2

212 VisualAge C++ Open Class Library Reference

Sorted Bag

Sorted Bag

A sorted bag is an ordered collection of zero or more elements with no key. Both

element equality and multiple elements are supported.

An example of using a sorted bag is a program for entering observations on the types

of stones found in a riverbed. Each time you find a stone on the riverbed, you enter

the stone's mineral type into the collection. You can enter the same mineral type for

several stones, because a sorted bag supports multiple elements. You can search for

stones of a particular mineral type, and you can determine the number of observations

of stones of that type. You can also display the contents of the collection, sorted by

mineral type, if you want a complete list of observations made to date.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a sorted bag and its relationship to other flat collections.

Derivation Collection

 Ordered Collection

Equality Collection Sorted Collection

Equality Sorted Collection

 Sorted Bag

Variants and

Header Files

ISortedBag, the first class in the table below, is the default implementation variant.

If you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivsrtbag.h

header file instead of the header file that you would normally use without Visual

Builder.

Class Name Header File Implementation

Variant

ISortedBag isrtbag.h AVL tree
IGSortedBag isrtbag.h AVL tree

ISortedBagOnBSTKeySortedSet isbbst.h B* tree
IGSortedBagOnBSTKeySortedSet isbbst.h B* tree

ISortedBagOnSortedLinkedSequence isbsls.h Linked sequence
IGSortedBagOnSortedLinkedSequence isbsls.h Linked sequence

 Copyright IBM Corp. 1993, 1995 213

Sorted Bag

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for sorted bag:

Class Name Header File Implementation

Variant

ISortedBagOnSortedTabularSequence isbsts.h Tabular sequence
IGSortedBagOnSortedTabularSequence isbsts.h Tabular sequence

ISortedBagOnSortedDilutedSequence isbsds.h Diluted sequence
IGSortedBagOnSortedDilutedSequence isbsds.h Diluted sequence

Method Page Method Page

Constructor 101 isLast 118

Copy Constructor 101 lastElement 118

Destructor 101 locate 118

operator!= 102 locateNext 120

operator= 102 locateOrAdd 121

operator== 102 maxNumberOfElements 123

add 103 newCursor 123

addAllFrom 104 numberOfDifferentElements 123

addDifference 107 numberOfElements 123

addIntersection 108 numberOfOccurrences 124

addUnion 110 remove 125

allElementsDo 110 removeAll 125

anyElement 112 removeAllOccurrences 126

compare 112 removeAt 126

contains 113 removeAtPosition 127

containsAllFrom 113 removeFirst 127

differenceWith 114 removeLast 128

elementAt 115 replaceAt 128

elementAtPosition 115 setToFirst 129

firstElement 117 setToLast 129

intersectionWith 117 setToNext 130

isBounded 117 setToNextDifferentElement 130

isEmpty 117 setToPosition 131

isFirst 117 setToPrevious 131

isFull 118 unionWith 132

Sorted Bag also defines a cursor that inherits from IOrderedCursor. The

members for IOrderedCursor are described in “Cursor” on page 267.

214 VisualAge C++ Open Class Library Reference

Sorted Bag

Template Arguments and Required Functions

 Sorted Bag
ISortedBag <Element>
IGSortedBag <Element, ECOps>

The default implementation of the class ISortedBag requires the following element

functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Sorted Bag on B* Key Sorted Set
ISortedBagOnBSTKeySortedSet <Element>
IGSortedBagOnBSTKeySortedSet <Element, ECOps>

The implementation of the class ISortedBagOnBSTKeySortedSet requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Sorted Bag on Sorted Linked Sequence
ISortedBagOnSortedLinkedSequence <Element>
IGSortedBagOnSortedLinkedSequence <Element, ECOps>

The implementation of the class ISortedBagOnSortedLinkedSequence requires the

following element functions:

Element Type

 ¹ Default constructor

 ¹ Constructor

 ¹ Assignment

 Sorted Bag 215

Sorted Bag

 ¹ Equality test

 ¹ Ordering relation

Sorted Bag on Sorted Tabular Sequence
ISortedBagOnSortedTabularSequence <Element>
IGSortedBagOnSortedTabularSequence <Element, ECOps>

The implementation of the class ISortedBagOnSortedTabularSequence requires the

following element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Sorted Bag on Sorted Diluted Sequence
ISortedBagOnSortedDilutedSequence <Element>
IGSortedBagOnSortedDilutedSequence <Element, ECOps>

The implementation of the class ISortedBagOnSortedDilutedSequence requires the

following element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IASortedBag, which

is found in the iasrtbag.h header file, or the corresponding reference class,

IRSortedBag, which is found in the irsrtbag.h header file. See Chapter 11,

“Polymorphic Use of Collections” in the Open Class Library User's Guide for further

information.

216 VisualAge C++ Open Class Library Reference

Sorted Bag

Template Arguments and Required Functions
IASortedBag <Element>
IRSortedBag <Element, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

 Sorted Bag 217

Sorted Bag

218 VisualAge C++ Open Class Library Reference

Sorted Map

Sorted Map

A sorted map is an ordered collection of zero or more elements that have a key.

Element equality is supported and the values of the elements are relevant. Elements

are sorted by the value of their keys.

Only elements with unique keys are supported. A request to add an element whose

key already exists in another element of the collection causes an exception to be

thrown. A request to add a duplicate element is ignored.

An example of using a sorted map is a program that matches the names of rivers and

lakes to their coordinates on a topographical map. The river or lake name is the key.

You cannot add a lake or river to the collection if it is already present in the

collection. You can display a list of all lakes and rivers, sorted by their names, and

you can locate a given lake or river by its key, to determine its coordinates.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a sorted map and its relationship to other flat collections.

Derivation Equality Key Collection Equality Sorted Collection

Equality Key Sorted Collection

 Sorted Map

The diagram does not show all bases of sorted map. See Figure 2 in the Open

Class Library User's Guide for a complete illustration.

Variants and

Header Files

ISortedMap, the first class in the table below, is the default implementation variant.

If you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivsrtmap.h

header file instead of the header file that you would normally use without Visual

Builder.

Class Name Header File Implementation Variant

ISortedMap isrtmap.h AVL tree
IGSortedMap isrtmap.h AVL tree

ISortedMapOnBSTKeySortedSet ismbst.h B* tree
IGSortedMapOnBSTKeySortedSet ismbst.h B* tree

 Copyright IBM Corp. 1993, 1995 219

Sorted Map

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for sorted maps:

Class Name Header File Implementation Variant

ISortedMapOnSortedLinkedSequence ismsls.h Linked sequence
IGSortedMapOnSortedLinkedSequence ismsls.h Linked sequence

ISortedMapOnSortedTabularSequence ismsts.h Tabular sequence
IGSortedMapOnSortedTabularSequence ismsts.h Tabular sequence

ISortedMapOnSortedDilutedSequence ismsds.h Diluted sequence
IGSortedMapOnSortedDilutedSequence ismsds.h Diluted sequence

Method Page Method Page

Constructor 101 isFull 118

Copy Constructor 101 isLast 118

Destructor 101 key 118

operator!= 102 lastElement 118

operator= 102 locate 118

operator== 102 locateElementWithKey 119

add 103 locateNext 120

addAllFrom 104 locateNextElementWithKey 120

addDifference 107 locateOrAdd 121

addIntersection 108 locateOrAddElementWithKey 122

addOrReplaceElementWithKey 109 maxNumberOfElements 123

addUnion 110 newCursor 123

allElementsDo 110 numberOfElements 123

anyElement 112 remove 125

compare 112 removeAll 125

contains 113 removeAt 126

containsAllFrom 113 removeAtPosition 127

containsAllKeysFrom 113 removeElementWithKey 127

containsElementWithKey 113 removeFirst 127

differenceWith 114 removeLast 128

elementAt 115 replaceAt 128

elementAtPosition 115 replaceElementWithKey 129

elementWithKey 115 setToFirst 129

firstElement 117 setToLast 129

intersectionWith 117 setToNext 130

isBounded 117 setToPosition 131

isEmpty 117 setToPrevious 131

isFirst 117 unionWith 132

220 VisualAge C++ Open Class Library Reference

Sorted Map

Sorted map also defines a cursor that inherits from IOrderedCursor. The

members for IOrderedCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Sorted Map
ISortedMap <Element, Key>
IGSortedMap <Element, Key, EKCOps>

The implementation of the class ISortedMap requires the following element and

key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 ¹ Equality test

Key Type

Ordering relation

Sorted Map on B* Key Sorted Set
ISortedMapOnBSTKeySortedSet <Element, Key>
IGSortedMapOnBSTKeySortedSet <Element, Key, EKCOps>

The implementation of the class ISortedMapOnBSTKeySortedSet requires the following

element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 ¹ Equality test

Key Type

Ordering relation

 Sorted Map 221

Sorted Map

Sorted Map on Sorted Linked Sequence
ISortedMapOnSortedLinkedSequence <Element, Key>
IGSortedMapOnSortedLinkedSequence <Element, Key, EKCOps>

The implementation of the class ISortedMapOnSortedLinkedSequence requires the

following element and key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 ¹ Equality test

Key Type

Ordering relation

Sorted Map on Sorted Tabular Sequence
ISortedMapOnSortedTabularSequence <Element, Key>
IGSortedMapOnSortedTabularSequence <Element, Key, EKCOps>

The implementation of the class ISortedMapOnSortedTabularSequence requires the

following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 ¹ Equality test

Key Type

Ordering relation

Sorted Map on Sorted Diluted Sequence
ISortedMapOnSortedDilutedSequence <Element, Key>
IGSortedMapOnSortedDilutedSequence <Element, Key, EKCOps>

The implementation of the class ISortedMapOnSortedDilutedSequence requires the

following element and key-type functions:

222 VisualAge C++ Open Class Library Reference

Sorted Map

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 ¹ Equality test

Key Type

Ordering relation

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IASortedMap, which

is found in the iasrtmap.h header file, or the corresponding reference class,

IRSortedMap, which is found in the irsrtmap.h header file. See Chapter 11,

“Polymorphic Use of Collections” in the Open Class Library User's Guide for further

information.

Template Arguments and Required Functions
IASortedMap <Element, Key>
IRSortedMap <Element, Key, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Sorted Map

The following program uses a sorted map and a sorted relation to display sorted lists

of the name and size of files contained on a disk. It uses the default classes,

ISortedMap and ISortedRelation, to implement the collections. The program uses the

sorted map to store the name of the file, because all elements in a sorted map are

unique and all names on a disk are unique. It uses a sorted relation for the file size,

because there may be identical file sizes, and identical values are permissible in

sorted relations.

The program uses the add() function to fill both collections. To print the collections,

it uses the forCursor macro and the allElementsDo() function.

 Sorted Map 223

Sorted Map

The program produces a list of files sorted by name (in ascending order) and a list of

the same files sorted by file size (in descending order). Because the output varies

depending on the file system in use when it is run, no output is shown here.

 See Appendix A, “Header Files for Collection Class Library Coding Examples”

on page 575 for the code of the dsur.h file.

// dskusage.C - An example of using a Sorted Map and a Sorted Relation
 #include "dsur.h"

// Our own common exit for all errors:
void errorExit(int, char*, char* = "");

// Use the default Sorted Map as is:
 #include <isrtmap.h>

// Use the default Sorted Relation as is:
 #include <isrtrel.h>

int main (int argc, char* argv[]) {
char* fspec = "dsu.dat"; // Default for input file
if (argc > 1) fspec = argv[1];

 ifstream inputfile(fspec);
 if (!inputfile)

errorExit(20, "Unable to open input file", fspec);

ISortedMap <DiskSpaceUR, char*> dsurByName;
 ISortedMap <DiskSpaceUR, char*>::Cursor
 curByName(dsurByName);

IGSortedRelation <DiskSpaceUR, int, DSURBySpaceOps>
 dsurBySpace;

IGSortedRelation <DiskSpaceUR, int, DSURBySpaceOps>::Cursor
 curBySpace(dsurBySpace);

// Read all records into dsurByName
while (inputfile.good()) {

 DiskSpaceUR dsur(inputfile);
if (dsur.isValid()) {

 dsurByName.add(dsur);
 dsurBySpace.add(dsur);
 }
 }

if (! inputfile.eof())
errorExit(39, "Error during read of", fspec);

cout << "\n\nAll Disk Space Usage records "
<< "sorted (ascending) by name:\n" << endl;

 forCursor(curByName)
cout << " " << dsurByName.elementAt(curByName) << endl;

cout << "\n\nAll Disk Space Usage records "
<< "sorted (descending) by space:\n" << endl;

 forCursor(curBySpace)
cout << " " << dsurBySpace.elementAt(curBySpace) << endl;

 return 0;
 }

 #include <stdlib.h>
// for exit() definition

void errorExit (int rc, char* s1, char* s2) {
cerr << s1 << " " << s2 << endl;

 exit(rc);
 }

224 VisualAge C++ Open Class Library Reference

Sorted Relation

Sorted Relation

A sorted relation is an ordered collection of zero or more elements that have a key.

The elements are sorted by the value of their key. Element equality is supported, and

the values of the elements are relevant.

The keys of the elements are not unique. You can add an element whether or not

there is already an element in the collection with the same key.

An example of using a sorted relation is a program used by telephone operators to

provide directory assistance. The computerized directory is a sorted relation whose

key is the name of the individual or business associated with a telephone number.

When a caller requests the number of a given person or company, the operator enters

the name of that person or company to access the phone number. The collection can

have multiple identical keys, because two individuals or companies might have the

same name. The collection is sorted alphabetically, because once a year it is used as

the source material for a printed telephone directory.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a sorted relation and its relationship to other flat collections.

Derivation Equality Key Collection Equality Collection

Equality Key Sorted Collection

 Sorted Relation

The diagram does not show all bases of sorted relation. See Figure 2 on page 4 in

the Open Class Library User's Guide for a complete illustration.

Variants and

Header Files

ISortedRelation, the first class in the table below, is the default implementation

variant. If you want to use polymorphism, you can replace the following class

implementation variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivsrtrel.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 225

Sorted Relation

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for sorted relation:

Class Name Header File Implementation Variant

ISortedRelation isrtrel.h Linked sequence
IGSortedRelation isrtrel.h Linked sequence

ISortedRelationOnSortedTabularSequence isrsts.h Tabular sequence
IGSortedRelationOnSortedTabularSequence isrsts.h Tabular sequence

ISortedRelationOnSortedDilutedSequence isrsds.h Diluted sequence
IGSortedRelationOnSortedDilutedSequence isrsds.h Diluted sequence

Method Page Method Page

Constructor 101 key 118

Copy Constructor 101 lastElement 118

Destructor 101 locate 118

operator!= 102 locateElementWithKey 119

operator= 102 locateNext 120

operator== 102 locateNextElementWithKey 120

add 103 locateOrAdd 121

addAllFrom 104 locateOrAddElementWithKey 122

addDifference 107 maxNumberOfElements 123

addIntersection 108 newCursor 123

addOrReplaceElementWithKey 109 numberOfDifferentKeys 123

addUnion 110 numberOfElements 123

allElementsDo 110 numberOfElementsWithKey 123

anyElement 112 remove 125

compare 112 removeAll 125

contains 113 removeAllElementsWithKey 126

containsAllFrom 113 removeAt 126

containsAllKeysFrom 113 removeAtPosition 127

containsElementWithKey 113 removeElementWithKey 127

differenceWith 114 removeFirst 127

elementAt 115 removeLast 128

elementAtPosition 115 replaceAt 128

elementWithKey 115 replaceElementWithKey 129

firstElement 117 setToFirst 129

intersectionWith 117 setToLast 129

isBounded 117 setToNext 130

isEmpty 117 setToNextWithDifferentKey 130

isFirst 117 setToPosition 131

isFull 118 setToPrevious 131

isLast 118 unionWith 132

226 VisualAge C++ Open Class Library Reference

Sorted Relation

Sorted relation also defines a cursor that inherits from IOrderedCursor. The

members for IOrderedCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Sorted Relation
ISortedRelation <Element, Key>
IGSortedRelation <Element, Key, EKCOps>

The default implementation of the class ISortedRelation requires the following

element and key-type functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 ¹ Equality test

Key Type

Ordering relation

Sorted Relation on Sorted Tabular Sequence
ISortedRelationOnSortedTabularSequence <Element, Key>
IGSortedRelationOnSortedTabularSequence <Element, Key, EKCOps>

The implementation of the class ISortedRelationOnSortedTabularSequence requires

the following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 ¹ Equality test

Key Type

Ordering relation

 Sorted Relation 227

Sorted Relation

Sorted Relation on Sorted Diluted Sequence
ISortedRelationOnSortedDilutedSequence <Element, Key>
IGSortedRelationOnSortedDilutedSequence <Element, Key, EKCOps>

The implementation of the class ISortedRelationOnSortedDilutedSequence requires

the following element and key-type functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Key access

 ¹ Equality test

Key Type

Ordering relation

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IASortedRelation,

which is found in the iasrtrel.h header file, or the corresponding reference class,

IRSortedRelation, which is found in the irsrtrel.h header file. See Chapter 11,

“Polymorphic Use of Collections” in the Open Class Library User's Guide for further

information.

Template Arguments and Required Functions
IASortedRelation <Element, Key>
IRSortedRelation <Element, Key,ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Sorted Relation

 See “Coding Example for Sorted Map” on page 223 for an example of a sorted

relation.

228 VisualAge C++ Open Class Library Reference

Sorted Set

Sorted Set

A sorted set is an ordered collection of zero or more elements with element equality

but no key. Only unique elements are supported. A request to add an element that

already exists is ignored. The value of the elements is relevant.

The elements of a sorted set are ordered such that the value of each element is less

than or equal to the value of its successor.

The element with the smallest value currently in a sorted set is called the first

element. The element with the largest value is called the last element. When an

element is added, it is placed in the sorted set according to the defined ordering

relation.

An example of using a sorted set is a program that tests numbers to see if they are

prime. Two complementary sorted sets are used, one for prime numbers, and one for

nonprime numbers. When you enter a number, the program first looks in the set of

nonprime numbers. If the value is found there, the number is nonprime. If the value

is not found there, the program looks in the set of prime numbers. If the value is

found there, the number is prime. Otherwise the program determines whether the

number is prime or nonprime, and places it in the appropriate sorted set. The

program can also display a list of prime or nonprime numbers, beginning at the first

prime or nonprime following a given value, because the numbers in a sorted set are

sorted from smallest to largest.

Figure 7 in the Open Class Library User's Guide gives an overview of the

properties of a sorted set and its relationship to other flat collections.

Derivation Collection

Ordered Collection

 Sorted Collection Equality Collection

Equality Sorted Collection

 Sorted Set

Variants and

Header Files

ISortedSet, the first class in the table below, is the default implementation variant.

If you want to use polymorphism, you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivsrtset.h

 Copyright IBM Corp. 1993, 1995 229

Sorted Set

header file instead of the header file that you would normally use without Visual

Builder.

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for sorted sets:

Class Name Header File Implementation Variant

ISortedSet isrtset.h AVL tree
IGSortedSet isrtset.h AVL tree

ISortedSetOnBSTKeySortedSet issbst.h B* tree
IGSortedSetOnBSTKeySortedSet issbst.h B* tree

ISortedSetOnSortedLinkedSequence isssls.h Linked sequence
IGSortedSetOnSortedLinkedSequence isssls.h Linked sequence

ISortedSetOnSortedTabularSequence isssts.h Tabular sequence
IGSortedSetOnSortedTabularSequence isssts.h Tabular sequence

ISortedSetOnSortedDilutedSequence isssds.h Diluted sequence
IGSortedSetOnSortedDilutedSequence isssds.h Diluted sequence

Method Page Method Page

Constructor 101 isFirst 117

Copy Constructor 101 isFull 118

Destructor 101 isLast 118

operator!= 102 lastElement 118

operator= 102 locate 118

operator== 102 locateNext 120

add 103 locateOrAdd 121

addAllFrom 104 maxNumberOfElements 123

addDifference 107 newCursor 123

addIntersection 108 remove 125

addUnion 110 removeAll 125

allElementsDo 110 removeAt 126

anyElement 112 removeAtPosition 127

compare 112 removeFirst 127

contains 113 removeLast 128

containsAllFrom 113 replaceAt 128

differenceWith 114 setToFirst 129

elementAt 115 setToLast 129

elementAtPosition 115 setToNext 130

firstElement 117 setToPosition 131

intersectionWith 117 setToPrevious 131

isBounded 117 unionWith 132

isEmpty 117

230 VisualAge C++ Open Class Library Reference

Sorted Set

Sorted Set also defines a cursor that inherits from IOrderedCursor. The members

for IOrderedCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Sorted Set
ISortedSet <Element>
IGSortedSet <Element, ECOps>

The default implementation of the class ISortedSet requires the following element

functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Sorted Set on B* Key Sorted Set
ISortedSetOnBSTKeySortedSet <Element>
IGSortedSetOnBSTKeySortedSet <Element, ECOps>

The default implementation of the class ISortedSetOnBSTKeySortedSet requires the

following element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

 Sorted Set 231

Sorted Set

Sorted Set on Sorted Linked Sequence
ISortedSetOnSortedLinkedSequence <Element>
IGSortedSetOnSortedLinkedSequence <Element, ECOps>

The implementation of the class ISortedSetOnSortedLinkedSequence requires the

following element functions:

Element Type

 ¹ Copy constructor

 ¹ Assignment

 ¹ Destructor

 ¹ Equality test

 ¹ Ordering relation

Sorted Set on Sorted Tabular Sequence
ISortedSetOnSortedTabularSequence <Element>
IGSortedSetOnSortedTabularSequence <Element, ECOps>

The implementation of the class ISortedSetOnSortedTabularSequence requires the

following element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

Sorted Set on Sorted Diluted Sequence
ISortedSetOnSortedDilutedSequence <Element>
IGSortedSetOnSortedDilutedSequence <Element, ECOps>

The implementation of the class ISortedSetOnSortedDilutedSequence requires the

following element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 ¹ Equality test

 ¹ Ordering relation

232 VisualAge C++ Open Class Library Reference

Sorted Set

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IASortedSet, which

is found in the iasrtset.h header file, or the corresponding reference class,

IRSortedSet, which is found in the irsrtset.h header file. See Chapter 11,

“Polymorphic Use of Collections” in the Open Class Library User's Guide for further

information.

Template Arguments and Required Functions
IASortedSet <Element>
IRSortedSet <Element, ConcreteBase>

The concrete base class is one of the classes defined above.

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Sorted Set

The following program uses the default class, ISortedSet, to create sorted lists of

planets with different properties. The program stores all planets in our solar system,

all heavy planets in our solar system, all bright planets in our solar system, and all

heavy or bright planets in our solar system in a number of sorted sets. Each set sorts

the planets by its distance from the sun.

The program uses the forCursor macro to create the heavyPlanets and the

brightPlanets collections. It uses the allElementsDo() function to display the planets

in each collection and the unionWith() function when creating the bright-or-heavy

planets category.

 See Appendix A, “Header Files for Collection Class Library Coding Examples”

on page 575 for the code of the planet.h file.

 Sorted Set 233

Sorted Set

// planets.C - An example of using a Sorted Set
 #include <iostream.h>

// Let's use the Sorted Set Default Variant:
 #include <isrtset.h>

// Get Class Planet:
 #include "planet.h"

 int main() {
ISortedSet<Planet> allPlanets, heavyPlanets, brightPlanets;

// A cursor to cursor through allPlanets:
 ISortedSet<Planet>::Cursor aPCursor(allPlanets);

 SayPlanetName showPlanet;

allPlanets.add(Planet("Earth", 149.60f, 1.0000f, 99.9f));
allPlanets.add(Planet("Jupiter", 778.3f, 317.818f, -2.4f));
allPlanets.add(Planet("Mars", 227.9f, 0.1078f, -1.9f));

 allPlanets.add(Planet("Mercury", 57.91f, 0.0558f, -0.2f));
allPlanets.add(Planet("Neptun", 4498.f, 17.216f, +7.6f));

 allPlanets.add(Planet("Pluto", 5910.f, 0.18f, +14.7f));
allPlanets.add(Planet("Saturn", 1428.f, 95.112f, +0.8f));
allPlanets.add(Planet("Uranus", 2872.f, 14.517f, +5.8f));
allPlanets.add(Planet("Venus", 108.21f, 0.8148f, -4.1f));

 forCursor(aPCursor) {
 if (allPlanets.elementAt(aPCursor).isHeavy())
 heavyPlanets.add(allPlanets.elementAt(aPCursor));

 if (allPlanets.elementAt(aPCursor).isBright())
 brightPlanets.add(allPlanets.elementAt(aPCursor));
 }

cout << endl << endl << "All Planets: " << endl;
 allPlanets.allElementsDo(showPlanet);

cout << endl << endl << "Heavy Planets: " << endl;
 heavyPlanets.allElementsDo(showPlanet);

cout << endl << endl << "Bright Planets: " << endl;
 brightPlanets.allElementsDo(showPlanet);

cout << endl << endl << "Bright-or-Heavy Planets: " << endl;
 brightPlanets.unionWith(heavyPlanets);
 brightPlanets.allElementsDo(showPlanet);

cout << endl << endl
<< "Did you notice that all these Sets are sorted"
<< " in the same order"

 << endl
<< " (distance of planet from sun) ? " << endl;

 return 0;

 }

234 VisualAge C++ Open Class Library Reference

Sorted Set

The program produces the following output:

All Planets:
Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

Heavy Planets:
Jupiter Saturn Uranus Neptune

Bright Planets:
Mercury Venus Mars Jupiter

Bright-or-Heavy Planets:
Mercury Venus Mars Jupiter Saturn Uranus Neptune

Did you notice that all these Sets are sorted in the same order
 (distance of planet from sun) ?

 Sorted Set 235

Sorted Set

236 VisualAge C++ Open Class Library Reference

Stack

Stack

A stack is a sequence with restricted access. It is an ordered collection of elements

with no key and no element equality. The elements are arranged so that each

collection has a first and a last element, each element except the last has a next

element, and each element but the first has a previous element. The type and value

of the elements are irrelevant and have no effect on the behavior of the stack.

Elements are added to and deleted from the top of the stack. Consequently, the

elements of a stack are in reverse chronological order.

A stack is characterized by a last-in, first-out (LIFO) behavior.

An example of using a stack is a program that keeps track of daily tasks that you

have begun to work on but that have been interrupted. When you are working on a

task and something else comes up that is more urgent, you enter a description of the

interrupted task and where you stopped it into your program, and the task is pushed

onto the stack. Whenever you complete a task, you ask the program for the most

recently saved task that was interrupted. This task is popped off the stack, and you

resume your work where you left off. When you attempt to pop an item off the stack

and no item is available, you have completed all your tasks and you can go home.

Derivation Collection

 Ordered Collection

 Sequential Collection

 Sequence

 Stack

Note that stack is based on sequence but is not actually derived from it or from the

other classes shown above. See “Restricted Access” in the Open Class Library

User's Guide for further details.

Variants and

Header Files

IStack, the first class in the table below, is the default implementation variant. If

you want to use polymorphism you can replace the following class implementation

variants by the reference class.

To use Visual Builder features with your collections, change the name of the desired

collection class template in the list below from I... to IV..., and use the ivstack.h

header file instead of the header file that you would normally use without Visual

Builder.

 Copyright IBM Corp. 1993, 1995 237

Stack

Members All members of flat collections are described in “Introduction to Flat Collections” on

page 97. The following members are provided for stack:

Class Name Header File Implementation Variant

IStack istack.h Linked sequence
IGStack istack.h Linked sequence

IStackOnTabularSequence istkts.h Tabular sequence
IGStackOnTabularSequence istkts.h Tabular sequence

IStackOnDilutedSequence istkds.h Diluted sequence
IGStackOnDilutedSequence istkds.h Diluted sequence

Method Page Method Page

Constructor 101 isFull 118

Copy Constructor 101 isLast 118

Destructor 101 lastElement 118

operator= 102 maxNumberOfElements 123

add 103 newCursor 123

addAllFrom 104 numberOfElements 123

addAsLast 105 pop 124

allElementsDo 110 push 124

anyElement 112 removeAll 125

compare 112 removeLast 128

elementAt 115 setToFirst 129

elementAtPosition 115 setToLast 129

firstElement 117 setToNext 130

isBounded 117 setToPosition 131

isEmpty 117 setToPrevious 131

isFirst 117 top 132

Stack also defines a cursor that inherits from IOrderedCursor. The members for
IOrderedCursor are described in “Cursor” on page 267.

Template Arguments and Required Functions

 Stack
IStack <Element>
IGStack <Element, StdOps>

The default implementation of the class IStack requires the following element

functions:

238 VisualAge C++ Open Class Library Reference

Stack

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

Stack on Tabular Sequence
IStackOnTabularSequence <Element>
IGStackOnTabularSequence <Element, StdOps>

The implementation of the class IStackOnTabularSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

Stack on Diluted Sequence
IStackOnDilutedSequence <Element>
IGStackOnDilutedSequence <Element, StdOps>

The implementation of the class IStackOnDilutedSequence requires the following

element functions:

Element Type

 ¹ Default constructor

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

Abstract Class and Reference Class

For polymorphism, you can use the corresponding abstract class, IAStack, which is

found in the iastack.h header file, or the corresponding reference class, IRStack,

which is found in the irstack.h header file. See Chapter 11, “Polymorphic Use

of Collections” in the Open Class Library User's Guide for further information.

Template Arguments and Required Functions
IRStack <Element, ConcreteBase>
IAStack <Element>

The concrete base class is one of the classes defined above.

 Stack 239

Stack

The required functions are the same as the required functions of the concrete base

class.

Coding Example for Stack

The following program creates two stacks (Stack1 and Stack2) using the default class,

IStack. It adds a number of words to Stack1, removes them from Stack1, adds them

to Stack2, and finally removes them from Stack2 so that they can be printed. The

push() and pop() functions are used for adding and removing elements, respectively.

Between these stack operations the stacks are printed. To prevent the stack from

changing during printing, the program uses the constant version of the iterator class,

IConstantIterator with the allElementsDo() function. The words print in the same

order as they were originally added to Stack1.

Because of the nature of the stack class, the program must use the constant iterator

class, IConstantIterator, when printing the stacks. It uses the push() and pop()

functions for adding and removing elements, respectively. The allElementsDo()

function is used when the collection is printed.

// pushpop.C - An example of using a Stack
 #include <string.h>
 #include <iostream.h>

// Let's use the default stack: IStack
 #include <istack.h>

typedef IStack <char*> SimpleStack;
// The stack requires iteration to be const.

typedef IConstantIterator <char*> StackIterator;

// Test variables to put into our Stack:

char *String[9] = { "The", "quick", "brown", "fox",
"jumps", "over", "a", "lazy", "dog." };

// A class to display the contents of our Stack:

class PrintClass : public StackIterator
 {
 public:

IBoolean applyTo(char* const& w)
 {

cout << w << endl;
 return(True);
 }
 };

// Main program
 int main()
 {

SimpleStack Stack1, Stack2;
 char *S;
 PrintClass Print;

// We specify two stacks.
// First all the strings are pushed onto the first stack.

240 VisualAge C++ Open Class Library Reference

Stack

// Next, they are popped from the first and pushed onto
// the second.
// Finally they are popped from the second and printed.
// During this final print the strings must appear
// in their original order.

 int i;

for (i = 0; i < 9; i ++) {
 Stack1.push(String[i]);
 }

cout << "Contents of Stack1:" << endl;
 Stack1.allElementsDo(Print);

cout << "----------------------------" << endl;

while (!Stack1.isEmpty()) {
Stack1.pop(S); // Pop from stack 1
Stack2.push(S); // Add it on top of stack 2

 }

cout << "Contents of Stack2:" << endl;
 Stack2.allElementsDo(Print);

cout << "----------------------------" << endl;

while (!Stack2.isEmpty()) {
 Stack2.pop(S);

cout << "Popped from Stack 2: " << S << endl;
 }

 return(0);
 }

This program produces the following output:

Contents of Stack1:
The
quick
brown
fox
jumps
over
a
lazy
dog.

Contents of Stack2:
dog.
lazy
a
over
jumps
fox
brown
quick
The

Popped from Stack 2: The
Popped from Stack 2: quick
Popped from Stack 2: brown
Popped from Stack 2: fox
Popped from Stack 2: jumps
Popped from Stack 2: over
Popped from Stack 2: a
Popped from Stack 2: lazy
Popped from Stack 2: dog.

 Stack 241

Stack

242 VisualAge C++ Open Class Library Reference

Tree Classes

Part 4. Tree Collection Classes

Introduction to Trees . 245

Defining the Traversal Order of Tree Elements 245

N-ary Tree . 247

Template Arguments and Required Functions 247

Terms Used . 248

Coding Example for N-ary Tree . 248

Tree Functions . 251

 Copyright IBM Corp. 1993, 1995 243

Tree Classes

244 VisualAge C++ Open Class Library Reference

Introduction to Trees

Introduction to Trees

A tree is a collection of nodes that can have an arbitrary number of references to

other nodes. There can be no cycles or short-circuit references. A unique path

connects every two nodes. One node is designated as the root of the tree.

Formally, a tree can be defined recursively in the following manner:

1. A single node by itself is a tree. This node is also the root of the tree.

2. If N is a node and T-1, T-2, ..., T-k are trees with roots R-1, R-2, ..., R-k,

respectively, then a new tree can be constructed by making N the parent of the

nodes R-1, R-2, ..., R-k. In this new tree, N is the root and T-1, T-2, ..., T-k are

the subtrees of the root N. Nodes R-1, R-2, ..., R-k are called children of

node N.

Associated with each node is a data item called element.

Nodes without children are called leaves or terminals. The number of children in a

node is called the degree of that node. The level of a given node is the number of

steps in the path from the root to the given node. The root is at level 0 by definition.

The height of a tree is the length of the longest path from the root to any node.

Defining the Traversal Order of Tree Elements

You can define the order in which nodes of a tree are traversed by specifying a

parameter of type ITreeIterationOrder in calls to the following member functions:

 ¹ setToFirst

 ¹ setToLast

 ¹ setToNext

 ¹ setToPrevious

 ¹ allElementsDo, allSubtreeElementsDo

 These functions are described in “N-ary Tree” on page 247.

The ITreeIterationOrder parameter can have one of two values: IPreorder or

IPostorder. The effect of each of these values is explained below.

IPreorder The search begins at the root of the tree, and continues with the leftmost child of the

root. If the child is the root of a subtree, the search continues with the leftmost child

of the subtree, and so on, until a terminal node is detected. The search continues

with all siblings of the terminal node, from left to right. If any of these siblings is

 Copyright IBM Corp. 1993, 1995 245

Traversal Order

the root of a subtree, the subtree is searched the same way as described above for the

tree.

The preorder method can be summarized by the following recursive rules:

1. Visit the root.

2. Traverse the subtrees from left to right in preorder.

IPostorder The IPostorder method is the opposite of IPreorder. The search begins with the

leftmost terminal node in the tree. Then that node's siblings are searched from left to

right. If any of these siblings is the root of a subtree, the subtree is searched for its

leftmost terminal node.

The postorder method can be sumarized by the following recursive rules:

1. Traverse the subtrees from left to right in postorder.

2. Visit the root.

The following figure shows a tree with 12 nodes, and the order of traversal for both

preorder and postorder methods. Numbers indicate the preorder method (node 1 is

searched before node 2) while letters indicate the postorder method (node A is

searched before node B).

Figure 1. Preorder and Postorder Iteration Methods for Trees

246 VisualAge C++ Open Class Library Reference

N-ary Tree

N-ary Tree

An n-ary tree is a special tree where each node can have up to n children.

n must be greater than one. If n is one, the tree is a list. If n is zero, the structure

loses its meaning.

An example of using an n-ary tree is a program used to build a family tree. (For

simplicity, assume that the family tree is not concerned with information about

spouses.) Whenever you discover a relative who is not already in your family tree,

you enter the relative's name. If you know the parent's name, and the parent is

already in the collection, the new relative is added as a child of the existing parent.

If the parent is known but is not in the collection, a new collection is created, with

the parent as the root element and the child as a child node of the parent. If you do

not know the parent, the relative is entered as the root element of a new collection.

You can also enter information about the children of a given relative; this information

is used to attach a subtree, whose root node is the child, to the node of the parent of

that child. Once you have established the collection, you can determine who is the

parent or oldest known ancestor of a given relative, and you can display a list of all

descendents of a given family member.

Derivation There are no bases or derived classes for N-ary Tree.

Variants and

Header Files

ITree is the default implementation variant based on tabular tree. IGTree is the

default implementation variant with generic operations class. Both classes are

declared in itree.h. No reference class exists for tree classes.

Members “Tree Functions” on page 251 lists the member functions for N-ary Tree.

Template Arguments and Required Functions

ITree <Element, numberOfChildren>

IGTree <Element, StdOps, numberOfChildren>

The default implementation of ITree requires the following element functions:

Element Type

 ¹ Copy constructor

 ¹ Destructor

 ¹ Assignment

 Copyright IBM Corp. 1993, 1995 247

N-ary Tree

The argument value of numberOfChildren() specifies the maximum number of

children for each node.

 Terms Used

Some of the terms used in this chapter are defined below. You can also use the

Glossary to look up terms you are unfamiliar with.

this tree The tree to which a function is applied, in contrast to the

given tree.

given ... Referring to a tree, element, or function that is given as a

function argument.

returned element An element returned as a function return value.

iteration order The order in which elements are visited in functions

allElementsDo(), allSubtreeElementsDo(), setToNext(), and

setToPrevious().

Coding Example for N-ary Tree

The following sample constructs a binary tree for the following expression: (8+2) *

(2+4) / (7-5). The program prints this tree in preorder, using prefix notation. It then

calculates the result of the expression. The program identifies subtrees consisting of

an operand and two operators, calculates the result and replaces the subtree by its

result. Finally, the tree consists of one node that is the result of the expression.

Note that the code does not respect precedence of "/" and "*" over "+" and "-".

// nary.C - An example of using an n-ary tree
 #include <itree.h>
 #include <istring.hpp>
 #include <iostream.h>

 //
// The tree for this expression is as follows: //

 // //
 // / //
 // * - //
 // + + 7 5 //
 // 8 2 2 4 //
 //

typedef ITree <IString, 2> BinaryTree;

IBoolean printNode(IString const& node, void* dummy) {
// Prints one node of an n-ary tree

cout << node << "|";
 return True;
 }

void prefixedNotation(BinaryTree const& naryTree) {
// Prints an n-ary tree in prefixed notation

naryTree.allElementsDo(printNode , IPreorder);

248 VisualAge C++ Open Class Library Reference

N-ary Tree

cout << endl;
 }

 void identifyChildren (IString &child1,
 IString &child2,
 BinaryTree &binTree,

ITreeCursor &binTreeCursor) {
// Identifies the children of a node

 binTree.setToNext(binTreeCursor, IPreorder);
child1 = binTree.elementAt(binTreeCursor);

 binTree.setToNextExistingChild(binTreeCursor);
child2 = binTree.elementAt(binTreeCursor);

 binTree.setToParent(binTreeCursor);
 }

IBoolean isNumber(IString child) {
// Checks whether a node contains a number
if ((child != '+') &&

(child != '-') &&
(child != '*') &&
(child != '/'))
{ return True; }

else { return False; }
 }

void lookForNextOperator(BinaryTree &binTree,
ITreeCursor &binTreeCursor) {

// Looks for the next operator in the tree
IBoolean operatorFound = False;

 do {
if (!isNumber(binTree.elementAt(binTreeCursor))) {

operatorFound = True;
 }
 else {
 binTree.setToNext(binTreeCursor, IPreorder);
 }
 }

while (! operatorFound);
 }

void calculateSubtree(double &result, double &operand1,
double &operand2, IString &operatorSign) {

// Calculates the result from a subtree in the complete tree
switch (*(char*)operatorSign) {

 case '+':
result = operand1+operand2;

 break;
 case '-':

result = operand1-operand2;
 break;
 case '/':

result = operand1/operand2;
 break;
 case '*':

result = operand1*operand2;
 break;

} // end of switch
 }

 N-ary Tree 249

N-ary Tree

/************************ main ****************************/
int main () {
// Construct the tree:

 BinaryTree binTree;
 BinaryTree::Cursor binTreeCursor(binTree);
 BinaryTree::Cursor binTreeSaveCursor(binTree);

 binTree.addAsRoot("/");
 binTree.setToRoot(binTreeCursor);

binTree.addAsChild(binTreeCursor, 1, "*");
 binTree.setToChild(1, binTreeCursor);

binTree.addAsChild(binTreeCursor, 1, "+");
 binTree.setToChild(1, binTreeCursor);

binTree.addAsChild(binTreeCursor, 1, "8");
binTree.addAsChild(binTreeCursor, 2, "2");

 binTree.setToParent(binTreeCursor);
binTree.addAsChild(binTreeCursor, 2, "+");

 binTree.setToChild(2, binTreeCursor);
binTree.addAsChild(binTreeCursor, 1, "2");
binTree.addAsChild(binTreeCursor, 2, "4");

 binTree.setToRoot(binTreeCursor);
binTree.addAsChild(binTreeCursor, 2, "-");

 binTree.setToChild(2, binTreeCursor);
binTree.addAsChild(binTreeCursor, 1, "7");
binTree.addAsChild(binTreeCursor, 2, "5");

// Print complete tree in prefix notation

cout << "Printing the original tree in prefixed notation:"
 << endl;
 prefixedNotation(binTree);

cout << " " << endl;

// Calculate tree

double operand1 = 0;
double operand2 = 0;
double result = 0;

 INumber replacePosition;
 IString operatorSign, child1, child2;

 binTree.setToRoot(binTreeCursor);
 do
 {
 lookForNextOperator(binTree, binTreeCursor);

operatorSign = binTree.elementAt(binTreeCursor);
identifyChildren (child1, child2, binTree, binTreeCursor);
if ((isNumber(child1)) && (isNumber(child2)))

 {
operand1 = child1.asDouble();
operand2 = child2.asDouble();
calculateSubtree(result, operand1, operand2,

 operatorSign);
if (binTree.numberOfElements() > 3)

 {
// If tree contains more than three elements, replace
// the calculated subtree by its result as follows.
// (Save the cursor, because it will become invalidated after

 // removeSubtree)
binTreeSaveCursor = binTreeCursor;

 binTree.setToParent(binTreeSaveCursor);
replacePosition = binTree.position(binTreeCursor);

 binTree.removeSubtree(binTreeCursor);

250 VisualAge C++ Open Class Library Reference

Tree Collection Functions

 binTree.addAsChild(binTreeSaveCursor,
 replacePosition,
 (IString)result);

cout << "Tree with calculated subtree replaced: "
 << endl;
 prefixedNotation(binTree);
 binTree.setToRoot(binTreeCursor);
 }
 else
 {

// If tree contains root with two children only, replace
// this calculated subtree by its result as follows:

 binTree.removeAll();
 binTree.addAsRoot(IString(result));

cout << "Now the tree contains the result only:" << endl;
 prefixedNotation(binTree);
 }
 }
 else
 {
 binTree.setToNext(binTreeCursor, IPreorder);
 }
 }

while (binTree.numberOfElements() > 1);

 return 0;
 }

The program produces the following output:

Printing the original tree in prefixed notation:
/|*|+|8|2|+|2|4|-|7|5|

Tree with calculated subtree replaced:
/|*|10|+|2|4|-|7|5|
Tree with calculated subtree replaced:
/|*|10|6|-|7|5|
Tree with calculated subtree replaced:
/|60|-|7|5|
Tree with calculated subtree replaced:
/|60|2|
Now the tree contains the result only:
30|

 Tree Functions

This section lists the public member functions of n-ary trees.

Constructor ITree () ;

Constructs a tree. The tree is initially empty; that is, it does not contain any nodes.

Copy

Constructor

ITree (ITree <Element, numberOfChildren> const& tree) ;

Constructs a tree by copying all elements from the given tree.

 Exception: IOutOfMemory

 N-ary Tree 251

Tree Collection Functions

Destructor ˜ITree () ;

Removes all elements from this tree.

Side Effects: All cursors of the tree become undefined.

operator= ITree <Element, numberOfChildren>& operator= (
ITree <Element, numberOfChildren> const& tree) ;

Copies all elements of the given tree to this tree.

Return Value: A reference to this tree.

Side Effects: All cursors of this tree become undefined.

 Exception: IOutOfMemory

addAsChild void addAsChild (ITreeCursor const& cursor,
IPosition position, Element const& element) ;

Adds the given element as a child with the given position to the node of this tree

denoted by the given cursor.

 Preconditions

¹ The cursor must point to an element of this tree.

¹ (1 ≤ position ≤ numberOfChildren()).

¹ The node denoted by the given cursor (of this tree) must not have a child at the

given position.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

 ¹ IPositionInvalidException

 ¹ IChildAlreadyExistsException

252 VisualAge C++ Open Class Library Reference

Tree Collection Functions

addAsRoot void addAsRoot (Element const& element) ;

Adds the given element as root of the tree.

Precondition: The tree must not have a root; that is, it must be empty.

 Exceptions

 ¹ IOutOfMemory

 ¹ IRootAlreadyExistsException

 allElementsDo, allSubtreeElementsDo
IBoolean allElementsDo (

IBoolean (*function) (Element&, void*),
 ITreeIterationOrder iterationOrder,

void* additionalArgument = 0) ;

IBoolean allElementsDo (
IBoolean (*function) (Element const&, void*),

 ITreeIterationOrder iterationOrder,
void* additionalArgument = 0) const;

IBoolean allSubtreeElementsDo (ITreeCursor const& cursor,
IBoolean (*function) (Element const&, void*),

 ITreeIterationOrder iterationOrder,
void* additionalArgument = 0) const;

IBoolean allSubtreeElementsDo (
ITreeCursor const& cursor,
IBoolean (*function) (Element&, void*),

 ITreeIterationOrder iterationOrder,
void* additionalArgument = 0) ;

Calls the given function for all elements of the subtree denoted by the given cursor

(of this tree) until the given function returns False. The elements are visited in the

given iteration order. Additional arguments can be passed to the given function using

additionalArgument. The additional argument defaults to zero if no additional

argument is given. The allElementsDo() function (without a subtree cursor argument)

iterates over all elements of the tree.

Note: The given function must not remove elements from or add elements to the

tree.

Return Value: Returns True if the given function returns True for every element it

is applied to.

 N-ary Tree 253

Tree Collection Functions

 Preconditions

¹ The cursor must belong to this tree.

¹ The cursor must point to an element of this tree.

 Exception: ICursorInvalidException

 allElementsDo, allSubtreeElementsDo
IBoolean allElementsDo (

IIterator <Element>& iterator,
ITreeIterationOrder iterationOrder) ;

IBoolean allElementsDo (
IConstantIterator <Element>& iterator,
ITreeIterationOrder iterationOrder) const;

IBoolean allSubtreeElementsDo (ITreeCursor const& cursor,
IIterator <Element>& iterator,
ITreeIterationOrder iterationOrder) ;

IBoolean allSubtreeElementsDo (ITreeCursor const& cursor,
IConstantIterator <Element>& iterator,
ITreeIterationOrder iterationOrder) const;

Calls the applyTo() function of the given iterator for all elements of the subtree

denoted by the given cursor (of this tree) until the applyTo() function returns False.

The elements are visited in the given iteration order. The allElementsDo() function

(without a subtree cursor argument) iterates over all elements of the tree.

Note: The applyTo() function must not remove elements from or add elements to

the tree.

 Preconditions

¹ The cursor must belong to this tree.

¹ The cursor must point to an element of this tree.

Return Value: Returns True if the applyTo() function returns True for every

element it is applied to.

 Exceptions: ICursorInvalidException

254 VisualAge C++ Open Class Library Reference

Tree Collection Functions

 attachAsChild, attachSubtreeAsChild
void attachAsChild (ITreeCursor const& cursor,
 IPosition position,

ITree <Element, numberOfChildren>& tree) ;

void attachSubtreeAsChild (ITreeCursor const& cursor,
 IPosition position,

ITree <Element, numberOfChildren>& tree,
ITreeCursor const& subTreeCursor) ;

Copies the subtree denoted by the given subtree cursor as a child with the given

position of the node (of this tree) denoted by the given cursor. Removes this subtree

from the given tree. The attachAsChild() function (without a subtree cursor

argument) copies and removes the whole given tree.

Be careful when this tree and the given tree are the same. In such cases you must

not attach a subtree to one of its own children, because a cyclic tree structure would

result. Because attachSubtreeAsChild() removes this subtree from this tree, you will

never be able to access either this subtree or the given subtree attached to it. This

practice can also lead to memory not being properly freed.

This warning applies to both attachAsChild() and attachSubtreeAsChild().

Note: These functions are implemented by copying a pointer to the subtree, rather

than by copying all elements in the subtree.

 Preconditions

¹ The cursor must point to an element of this tree.

¹ The subtree cursor must point to an element of the given tree.

¹ (1 ≤ position ≤ numberOfChildren()).

¹ The node denoted by the given cursor (of this tree) must not have a child at the

given position.

¹ If this tree and the given tree are the same, a subtree must not be attached to one

of its own children.

 Exceptions

 ¹ ICursorInvalidException

 ¹ IPositionInvalidException

 ¹ IChildAlreadyExistsException

 ¹ ICyclicAttachException

 N-ary Tree 255

Tree Collection Functions

 attachAsRoot, attachSubtreeAsRoot
void attachAsRoot (

ITree <Element, numberOfChildren>& tree) ;

void attachSubtreeAsRoot (
ITree <Element, numberOfChildren>& tree,
ITreeCursor const& cursor) ;

Copies the subtree denoted by the cursor of the given tree to (the root of) this tree,

and removes this subtree from the given tree. The attachAsRoot() function (without

a cursor argument) copies and removes the whole given tree.

Note: These functions are implemented by copying a pointer to the subtree, rather

than by copying all elements in the subtree.

 Preconditions

¹ The cursor must point to an element of this tree.

¹ The tree must not have a root; that is, it must be empty.

 Exceptions

 ¹ ICursorInvalidException

 ¹ IRootAlreadyExistsException

 copy, copySubtree
void copy (

(ITree <Element, numberOfChildren> const& tree) ;

void copySubtree (
ITree <Element, numberOfChildren> const& tree,
ITreeCursor const& cursor) ;

Removes all elements from this tree, and copies the subtree denoted by the given

cursor of the given tree to (the root of) this tree. The copy function (without a cursor

argument) copies the whole given tree.

Preconditions: The cursor must point to an element of the given tree.

 Exceptions

 ¹ IOutOfMemory

 ¹ ICursorInvalidException

256 VisualAge C++ Open Class Library Reference

Tree Collection Functions

elementAt Element const& elementAt (
ITreeCursor const& cursor) const;

Element& elementAt (ITreeCursor const& cursor) ;

Returns a reference to the element pointed to by the given cursor.

Precondition: The cursor must point to an element of this tree.

 Exception: ICursorInvalidException

hasChild IBoolean hasChild (IPosition position,
ITreeCursor const& cursor) const;

Returns True if the node pointed to by the given cursor has a child at the given

position.

 Preconditions

¹ The cursor must point to an element of this tree.

¹ (1 ≤ position ≤ numberOfChildren())

 Exceptions

 ¹ ICursorInvalidException

 ¹ IPositionInvalidException

isEmpty IBoolean isEmpty () const;

Returns True if the tree is empty.

isLeaf IBoolean isLeaf (ITreeCursor const& cursor) const;

Returns True if the node pointed to by the given cursor is a leaf node of the tree. A

leaf node is a node with no children.

Precondition: The cursor must point to an element of this tree.

 Exception: ICursorInvalidException

 N-ary Tree 257

Tree Collection Functions

isRoot IBoolean isRoot (ITreeCursor const& cursor) const;

Returns True if the node pointed to by the given cursor is the root node of the tree.

Precondition: The cursor must point to an element of this tree.

 Exception: ICursorInvalidException

newCursor ITreeCursor* newCursor () const;

Creates a cursor for the tree. The cursor is initially invalid.

Return Value: Pointer to the cursor.

 Exception: IOutOfMemory

 numberOfChildren
INumber numberOfChildren () const;

Returns the number of children a node can possibly have. The actual number of

children of any node will always be less than or equal to this number.

 numberOfElements, numberOfSubtreeElements
INumber numberOfElements () const;

INumber numberOfSubtreeElements (
ITreeCursor const& cursor) const;

Returns the number of elements that the subtree denoted by the given cursor contains.

The subtree root, inner, and leaf nodes are counted. The numberOfElements() function

(without a cursor argument) counts the number of elements in the whole tree.

Preconditions: The cursor must belong to the tree and must point to an element in

the tree.

 Exception: ICursorInvalidException

258 VisualAge C++ Open Class Library Reference

Tree Collection Functions

 numberOfLeaves, numberOfSubtreeLeaves
INumber numberOfLeaves () const;

INumber numberOfSubtreeLeaves (
ITreeCursor const& cursor) const;

Returns the number of leaf elements that the subtree denoted by the given cursor

contains. Leaves are nodes that have no children. The numberOfLeaves() function

(without a cursor argument) counts the number of leaves in the whole tree.

Preconditions: The cursor must belong to the tree and must point to an element in

the tree.

 Exception: ICursorInvalidException

position INumber position (
ITreeCursor const& cursor) const;

Returns the position of the node pointed to by the given cursor as a child with respect

to its parent node. The position of the root node is 1.

Precondition: The cursor must point to an element of this tree.

 Exception: ICursorInvalidException

 removeAll, removeSubtree
void removeAll () ;

void removeSubtree (ITreeCursor const& cursor) ;

Removes the subtree denoted by the given cursor (of this tree). The removeAll()

function (without a cursor argument) removes all elements from this tree.

Precondition: The cursor must point to an element of this tree.

Side Effects: For removeSubtree(), the given cursor is invalidated after removal.

 Exception: ICursorInvalidException

 N-ary Tree 259

Tree Collection Functions

replaceAt void replaceAt (ITreeCursor const& cursor,
Element const& element) ;

Replaces the element pointed to by the cursor with the given element.

Precondition: The cursor must point to an element of this tree.

 Exception: ICursorInvalidException

setToChild IBoolean setToChild (IPosition position,
ITreeCursor& cursor) const;

Sets the cursor to the child with the given position of the node denoted by the given

cursor (of this tree). Invalidates the cursor if this child does not exist.

 Preconditions

¹ The cursor must point to an element of this tree.

¹ (1 ≤ position ≤ numberOfChildren()).

Return Value: Returns True if the child exists.

 Exceptions

 ¹ ICursorInvalidException

 ¹ IPositionInvalidException

setToFirst IBoolean setToFirst (ITreeCursor& cursor,
ITreeIterationOrder iterationOrder) const;

Sets the cursor to the first node in the given iteration order. Invalidates the cursor if

the tree is empty.

Precondition: The cursor must belong to this tree.

Return Value: Returns True if the tree is not empty.

 Exception: ICursorInvalidException

260 VisualAge C++ Open Class Library Reference

Tree Collection Functions

 setToFirstExistingChild
IBoolean setToFirstExistingChild (

ITreeCursor& cursor) const;

Sets the cursor to the first child of the node denoted by the given cursor (of this tree).

Invalidates the cursor if the node has no child. A node with no child is a leaf node

of the tree.

Preconditions: The cursor must point to an element of this tree.

Return Value: Returns True if the node has a child.

 Exception: ICursorInvalidException

setToLast IBoolean setToLast (ITreeCursor& cursor,
ITreeIterationOrder iterationOrder) const;

Sets the cursor to the last node in the given iteration order. Invalidates the cursor if

the tree is empty.

Precondition: The cursor must belong to this tree.

Return Value: Returns True if the tree is not empty.

 Exception: ICursorInvalidException

 setToLastExistingChild
IBoolean setToLastExistingChild (

ITreeCursor& cursor) const;

Sets the cursor to the last child of the node denoted by the given cursor (of this tree).

Invalidates the cursor if the node has no child. A node with no child is a leaf node

of the tree.

Precondition: The cursor must point to an element of this tree.

Return Value: Returns True if the node has a child.

 Exception: ICursorInvalidException

 N-ary Tree 261

Tree Collection Functions

setToNext IBoolean setToNext (ITreeCursor& cursor,
ITreeIterationOrder iterationOrder) const;

Sets the cursor to the next node in the given iteration order. Invalidates the cursor if

there is no next node.

Precondition: The cursor must point to an element of this tree.

Return Value: Returns True if the given cursor does not point to the last node (in

iteration order).

 Exception: ICursorInvalidException

 setToNextExistingChild
IBoolean setToNextExistingChild (

ITreeCursor& cursor) const;

Sets the cursor to the next existing sibling of the node denoted by the given cursor

(of this tree). Invalidates the cursor if the node has no next sibling. A node with no

next sibling is the last existing child of its parent.

Precondition: The cursor must point to an element of this tree.

Return Value: Returns True if the node has a next sibling.

 Exception: ICursorInvalidException

setToParent IBoolean setToParent (ITreeCursor& cursor) const;

Sets the cursor to the parent of the node denoted by the given cursor (of this tree).

Invalidates the cursor if the node has no parent. A node with no parent is the root

node of its tree.

Precondition: The cursor must point to an element of this tree.

Return Value: Returns True if the node has a parent.

 Exception: ICursorInvalidException

262 VisualAge C++ Open Class Library Reference

Tree Collection Functions

 setToPrevious
IBoolean setToPrevious (ITreeCursor& cursor,

ITreeIterationOrder iterationOrder) const;

Sets the cursor to the previous node in the given iteration order. Invalidates the

cursor if there is no previous node.

Precondition: The cursor must point to an element of this tree.

Return Value: Returns True if the given cursor does not point to the first node (in

iteration order).

 Exception: ICursorInvalidException

 setToPreviousExistingChild
IBoolean setToPreviousExistingChild (

ITreeCursor& cursor) const;

Sets the cursor to the previous existing sibling of the node denoted by the given

cursor (of this tree). Invalidates the cursor if the node has no previous sibling. A

node with no previous sibling is the first existing child of its parent.

Precondition: The cursor must point to an element of this tree.

Return Value: Returns True if the node has a previous sibling.

 Exception: ICursorInvalidException

setToRoot IBoolean setToRoot (ITreeCursor& cursor) const;

Sets the cursor to the root node of the tree. Invalidates the cursor if the tree is empty

(that is, if no root node exists).

Precondition: The cursor must belong to this tree.

Return Value: Returns True if the tree is not empty.

 Exception: ICursorInvalidException

 N-ary Tree 263

Tree Collection Functions

264 VisualAge C++ Open Class Library Reference

Auxiliary Classes

Part 5. Auxiliary Collection Classes

This part describes the abstract collection classes. The abstract classes are the base

classes from which concrete collection classes and their implementation variants are

derived.

Cursor . 267

Public Member Functions . 268

Tree Cursor . 271

Public Members of Tree Cursor . 271

Iterator and Constant Iterator Classes . 275

Pointer Classes . 277

Members . 277

Coding Example for Managed Element Pointer 279

 Copyright IBM Corp. 1993, 1995 265

Auxiliary Classes

266 VisualAge C++ Open Class Library Reference

Cursor

Cursor

Each collection class defines its own nested cursor class. All of these cursor classes

are derived from one of the following classes:

 ¹ IElementCursor

 ¹ IOrderedCursor

IOrderedCursor is derived from IElementCursor, and IElementCursor is in turn derived

from ICursor. Only cursors of ordered collections are derived from IOrderedCursor.

Cursors from unordered collections are derived from IElementCursor, and only know

the member functions from IElementCursor and ICursor.

This chapter describes the general member functions of these three cursor classes as

well as the specific member functions provided for specific collections. Because the

cursor classes are all abstract classes, no objects of type IOrderedCursor,

IElementCursor, or ICursor can be declared. You can obtain cursor objects by using

the collection member newCursor(), or by defining a cursor of a specific collection

cursor class. The newCursor() member creates a cursor of the collection to which it

is applied.

The newCursor() member returns a pointer to the newly created cursor object.

Each cursor object is associated with a collection object. A cursor function merely

calls the corresponding function for this collection. For example,

cursor.setToFirst() is the same as collection.setToFirst(cursor), where

collection is the object associated with cursor.

Header File The cursor classes are declared in icursor.h. Note that individual collection header

files already include icursor.h; you do not need to include the file in your programs.

Members The cursor classes define the following methods:

Method Page Method Page

Constructor 268 operator== 269

copy 268 setToFirst 269

isValid 268 setToLast 269

invalidate 268 setToNext 269

element 268 setToPrevious 270

operator!= 268

 Copyright IBM Corp. 1993, 1995 267

Cursor

Public Member Functions

Constructor Cursor (Collection const& collection) ;

Constructs the cursor and associates it with the given collection. The cursor is

initially invalid. The name of the constructor is that of the nested cursor class.

copy void copy (ICursor const& cursor) ;

Copies the given cursor to this cursor. This cursor now points to where the given

cursor points.

Precondition: The given cursor and this cursor must refer to the same collection

type.

Note: This precondition cannot be checked.

isValid IBoolean isValid () const;

Returns True if the cursor points to an element of the associated collection.

invalidate void invalidate () ;

Invalidates the cursor; that is, it no longer points to an element of the associated

collection.

element Element const& element () const;

Returns a constant reference to the element of the associated collection to which the

cursor points.

Precondition: The cursor must point to an element of the associated collection.

 Exception: ICursorInvalidException

operator!= IBoolean operator!= (Cursor const& cursor) const;
IBoolean operator!= (ICursor const& cursor) const;

Returns True if the cursor does not point to the same element (of the same collection)

as the given cursor.

268 VisualAge C++ Open Class Library Reference

Cursor

operator== IBoolean operator== (Cursor const& cursor) const;
IBoolean operator== (ICursor const& cursor) const;

Returns True if the cursor points to the same element (of the same collection) as the

given cursor.

setToFirst IBoolean setToFirst () ;

Sets the cursor to the first element of the associated collection in iteration order.

Invalidates the cursor if the collection is empty (if no first element exists).

Return Value: Returns True if the associated collection is not empty.

setToLast IBoolean setToLast () ;

Sets the cursor to the last element of the associated collection in iteration order.

Invalidates the cursor if the collection is empty (no last element exists). This function

is only available for cursors of ordered collections. Returns True if the associated

collection was not empty.

setToNext IBoolean setToNext () ;

Sets the cursor to the next element in the associated collection in iteration order.

Invalidates the cursor if no more elements are left to be visited. Returns True if there

was a next element.

Precondition: The cursor must point to an element of the associated collection.

 Exception: ICursorInvalidException

 Cursor 269

Cursor

 setToPrevious
IBoolean setToPrevious () ;

Sets the cursor to the previous element of the associated collection in iteration order.

Invalidates the cursor if no such element exists. This function is only available for

cursors of ordered collections.

Return Value: Returns True if a previous element exists.

Precondition: The cursor must point to an element of the associated collection.

 Exception: ICursorInvalidException

270 VisualAge C++ Open Class Library Reference

Tree Cursor

Tree Cursor

For n-ary trees, cursors are used to point to nodes in the tree. Unlike cursors of flat

collections, tree cursors stay defined when elements are added to the tree, or when

elements other than the one pointed to are removed. Cursors are used in operations

to access the element information stored in a node. They are also used to designate a

subtree of the tree, namely the subtree whose root node the cursor points to.

As for flat collections, a distinction is made between the abstract base class

ITreeCursor, and cursor classes local to the tree classes themselves. The local, or

nested, cursor classes are derived from the abstract base class.

Header Files The declarations for ITreeCursor can be found in itcursor.h.

Members Tree Cursor defines the following member functions:

Method Page Method Page

Constructor 271 setToFirstExistingChild 272

operator!= 271 setToLastExistingChild 273

operator== 272 setToNextExistingChild 273

element 272 setToParent 273

isValid 272 setToPreviousExistingChild 273

invalidate 272 setToRoot 274

setToChild 272

Public Members of Tree Cursor

Constructor Cursor (Tree const& tree) ;

Constructs the cursor and associates it with the given tree. The cursor is initially

invalid.

operator!= IBoolean operator!= (Cursor const& cursor) ;

Returns True if the cursor does not point to the same node of the same tree as the

given cursor.

 Copyright IBM Corp. 1993, 1995 271

Tree Cursor

operator== IBoolean operator== (Cursor const& cursor) ;

Returns True if the cursor points to the same node of the same tree as the given

cursor.

element Element const& element () ;

Returns a reference to the element of the associated tree to which the cursor points.

Preconditions: The cursor must point to a node of the associated tree.

 Exception: ICursorInvalidException

isValid IBoolean isValid () ;

Returns True if the cursor points to a node of the associated tree.

invalidate void invalidate () ;

Invalidates the cursor so that it no longer points to a node of the associated tree.

setToChild IBoolean setToChild (IPosition position) ;

Sets the cursor to the child node with the given position. If the child does not exist,

the cursor is invalidated. If the child at the given position exists, setToChild()

returns True.

 Preconditions

¹ (1 ≤ position ≤ numberOfChildren).

¹ The cursor must point to a node of the associated tree.

 Exceptions

 ¹ IPositionInvalidException

 ¹ ICursorInvalidException

 setToFirstExistingChild
IBoolean setToFirstExistingChild () ;

Sets the cursor to the first existing child of the associated tree. If the node pointed to

by the cursor has no children (that is, if the node is a leaf) the cursor is invalidated.

If the node pointed to by the cursor has a child, setToFirstExistingChild() returns

True.

272 VisualAge C++ Open Class Library Reference

Tree Cursor

 setToLastExistingChild
IBoolean setToLastExistingChild () ;

Sets the cursor to the last existing child of the associated tree. If the node pointed to

by the cursor has no children (that is, if the node is a leaf) the cursor is invalidated. If

the node pointed to by the cursor has a child, setToLastExistingChild() returns True.

 setToNextExistingChild
IBoolean setToNextExistingChild () ;

Sets the cursor to the next existing sibling of the node to which the cursor points. If

the node to which the cursor points is the last child of its parent, no next existing

child exists and the cursor is invalidated.

Return Value: Returns False if a next existing child exists.

Preconditions: The cursor must point to a node of the associated tree.

 Exception: ICursorInvalidException

setToParent IBoolean setToParent () ;

Sets the cursor to the parent of the node pointed to by the cursor. If the cursor points

to the root, the node has no parent, and the cursor is invalidated.

Return Value: Returns True if the node has a parent.

Preconditions: The cursor must point to a node of the associated tree.

 Exception: ICursorInvalidException

 setToPreviousExistingChild
IBoolean setToPreviousExistingChild () ;

Sets the cursor to the previous existing sibling of the node to which the cursor points.

If the node to which the cursor points is the last child of its parent, no more children

exist and the cursor is invalidated.

Return Value: Returns True if there was a previous child.

Precondition: The cursor must point to a node of the associated tree.

 Exception: ICursorInvalidException

 Tree Cursor 273

Tree Cursor

setToRoot IBoolean setToRoot () ;

Sets the cursor to the root of the associated tree. If the collection is empty (if no root

element exists), the cursor is invalidated. Otherwise, setToRoot() returns True.

274 VisualAge C++ Open Class Library Reference

Iterator and Constant Iterator Classes

Iterator and

Constant Iterator Classes

The classes IIterator and IConstantIterator define the interface for iterator objects.

The redefinition of the function applyTo() defines the actions that are performed with

the version of allElementsDo() that takes an iterator argument. (See

“allElementsDo” on page 110 for more information on this function.) Iteration stops

when applyTo() returns False.

 The figure Iteration Using Iterators in the Open Class Library User's Guide

explains the concepts and usage of iterations.

Derivation These classes do not derive from any other class.

Header File iiter.h

Members These classes define only one function, as a virtual function.

applyTo virtual IBoolean applyTo (Element const& element) = 0;

This function applies a series of specified statements or a function to all elements of a

collection for which you use the iterator. For example,

myCollection.allElementsDo(myIterator); causes the code in the applyTo() function

that you code for your iterator object myIterator to be applied to all elements of the

collection myCollection.

For an example on how to use iterators, see “Iteration Using Iterators” on

page 106 in the Open Class Library User's Guide.

 Copyright IBM Corp. 1993, 1995 275

Iterator and Constant Iterator Classes

276 VisualAge C++ Open Class Library Reference

Pointer Classes

Pointer Classes

The Collection Class Library defines five pointer classes:

 ¹ IAutoPointer

 ¹ IAutoElemPointer

 ¹ IElemPointer

 ¹ IMngPointer

 ¹ IMngElemPointer

These classes are declared in the header file iptr.h. You can select from these

classes depending on your requirements:

¹ Pointers from classes named I...ElemPointer (also called element pointers)

route the operations on the pointers to the referenced elements.

¹ Pointers from classes named IAuto...Pointer (also called automatic pointers)

delete the elements they reference when the pointers are destructed. No reference

count is kept.

¹ Pointers from classes named IMng...Pointer (also called managed pointers)

keep a reference count for each referenced element. When the last managed

pointer to the element is destructed, the element is automatically deleted.

 For further information on the characteristics of these pointer types and how to

use them, see “Using Pointer Classes” in the Open Class Library User's Guide.

 Members

The pointer classes define constructors, a destructor, and four operators. An equality

test operator, although not actually a member of the pointer classes, is also available.

Member Page Member Page

Constructors 277 Conversion operator 278

Copy constructor 278 operator-> 278

Destructors 278 operator= 278

operator* 278 operator== 279

Constructors IAutoPointer ();
IElemPointer ();
IMngPointer ();

Constructs a pointer of the indicated type and initializes it with NULL.

 Copyright IBM Corp. 1993, 1995 277

Pointer Classes

Constructors from a Given C++ Pointer
IAutoPointer (Element *ptr, IExplicitInit)
IAutoElemPointer (Element *ptr, IExplicitInit)
IElemPointer (Element *ptr, IExplicitInit = IINIT)
IMngPointer (Element *ptr, IExplicitInit)
IMngElemPointer (Element *ptr, IExplicitInit)

Constructs a pointer object of the indicated type from a given C++ pointer. For

managed pointers, the reference count of the referenced element is set to 1.

Copy Constructors from a Given Collection Class Pointer
IAutoPointer (IAutoPointer < Element > const& ptr)
IMngPointer (IMngPointer < Element > const& ptr)

Constructs a new pointer and initializes it with the given pointer. For automatic

pointers, the given pointer is set to NULL. For managed pointers, the reference count

of the referenced element is incremented by 1.

Destructors ˜IAutoPointer ()
˜IAutoElemPointer ()

Deletes the object referenced to by the automatic pointer.

˜IMngPointer ()
˜IMngElemPointer ()

Destructs the pointer and decrements the reference count of the referenced element.

If the reference count is 0, the referenced element is deleted.

operator* Element& operator * () const;

Returns a reference to the object to which the pointer refers.

Conversion

operator

operator Element* () const

Implicitly convert this pointer to a C++ pointer.

operator-> Element* operator-> () const

Returns a C pointer to the object to which the pointer refers.

operator= void operator = (IAutoPointer < Element > const& ptr)
IMngPointer < Element >& operator = (IMngPointer < Element > const& ptr)
IMngElemPointer < Element >& operator = (IMngElemPointer < Element > const& ptr)

278 VisualAge C++ Open Class Library Reference

Pointer Classes

Assigns the given pointer to this pointer. For automatic pointers, the given pointer is

set to NULL and the previously referenced element is deleted. For managed pointers,

the reference count of the referenced element is incremented and the reference count

of the previously referenced element is decremented.

operator== The pointer classes do not have an operator== explicitly defined for them.

However, for equality test you can use the syntax:

pointerVariable1 == pointerVariable2;

The conversion operator (operator Element*) implicitly converts the objects to C

pointers, and then the operator== for C pointers is invoked.

Because the operator== is not actually a member of the class, you cannot write an

equality test like the following:

if (pointerVariable1.operator==(pointerVariable2)) {/* ... */}

Coding Example for Managed Element Pointer

The following sample allows you to store managed pointers for various graphical

objects into a key sorted set. The graphical objects, namely lines, curves, and circles,

inherit from a base class Graphics. Using these pointers, you can draw the various

shapes from the collection.

// graph.C - demonstrate how to use Collection Class pointers

#include <iostream.h>
#include "graph.h"
#include "line.h"
#include "circle.h"
#include "curve.h"
#include <iptr.h>
#include <iksset.h>

typedef IMngElemPointer <Graphics> MngGraphicsPointer;
typedef IKeySortedSet <MngGraphicsPointer, int> MngPointerKSet;

ostream & operator << (ostream & sout,
MngPointerKSet const& mgdPointerKSet) {

 MngGraphicsPointer drawObject;
 MngPointerKSet::Cursor
 gpsCursor(mgdPointerKSet);

 forCursor(gpsCursor) {
drawObject = gpsCursor.element();

sout << "\n Key is: " << drawObject->graphicsKey()
<< "\n ID is: " << drawObject->id() << endl;

 drawObject->draw();
} /* endfor */

 return sout;
}

 Pointer Classes 279

Pointer Classes

 int main () {
 MngPointerKSet graphMngPointerKSet;

// Add curve pointers, circle pointers and line
// pointers to the graphMngPointerKSet.

//Creating curve objects and adding pointers to the collections
MngGraphicsPointer pcurve1 (new Curve
(10, "Curve 1",

 1.1, 4.3, 2.1, 6.4, 3.1, 9.7, 4.1, 6.5, 5.1, 7.4),
 IINIT);

MngGraphicsPointer pcurve2 (new Curve
(20 ,"Curve 2",

 1.2, 3.9, 2.2, 5.9, 3.2, 8.8, 4.2, 7.5, 5.2, 9.4),
 IINIT);

 graphMngPointerKSet.add(pcurve1);
 graphMngPointerKSet.add(pcurve2);

//Creating circle objects and adding pointers to the collections

MngGraphicsPointer pcircle1 (new Circle
(40 , "Circle 1" , 1.0, 1.0, 1.0), IINIT);
MngGraphicsPointer pcircle2 (new Circle
(50 , "Circle 2", 2.0, 2.0, 2.0), IINIT);

 graphMngPointerKSet.add(pcircle1);
 graphMngPointerKSet.add(pcircle2);

//Creating line objects and adding pointers to the collections

MngGraphicsPointer pline1 (new Line
(70 , "Line 1" , 1.1 , 1.1 , 5.1 , 5.1), IINIT);
MngGraphicsPointer pline2 (new Line
(80 , "Line 2" , 2.2 , 2.2 , 5.2 , 5.2), IINIT);
// if you want to have a normal C-pointer:
Line* cPointerToLine = new Line
(90 , "Line 3" , 3.3 , 3.3 , 5.3 , 5.3);
MngGraphicsPointer pline3 (cPointerToLine, IINIT);

 graphMngPointerKSet.add(pline1);
 graphMngPointerKSet.add(pline2);
 graphMngPointerKSet.add(pline3);

cout << "Drawing the shapes from the key set "
<< "of Managed Pointers: \n"
<< graphMngPointerKSet << "\n " << endl;

 graphMngPointerKSet.elementWithKey(70)->draw();
 cPointerToLine->draw();
 pline3->draw();

// Now we are about to end the program. The objects referenced
// by managed pointers are automatically deleted. See what
// happens in the output of the program.

 return 0;
 }

280 VisualAge C++ Open Class Library Reference

Abstract Classes

Part 6. Abstract Collection Classes

This part describes the abstract Collection Classes.

Collection . 283

Equality Collection . 285

Equality Key Collection . 287

Equality Key Sorted Collection . 289

Equality Sorted Collection . 291

Key Collection . 293

Key Sorted Collection . 295

Ordered Collection . 297

Sequential Collection . 299

Sorted Collection . 301

 Copyright IBM Corp. 1993, 1995 281

Abstract Classes

282 VisualAge C++ Open Class Library Reference

Collection

Collection

Derivation Collection does not have any bases. Because collection is an abstract class, it

cannot be used to create any objects. The following abstract classes are derived from

collection:

 ¹ Key collection

 ¹ Equality collection

 ¹ Ordered collection

The concrete class heap is defined by collection.

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of collection to the class hierarchy.

Header File Collection is declared in the header file iacllct.h.

Members All the member functions of collection are defined as virtual functions and are

described in “Introduction to Flat Collections” on page 97. The following member

functions are provided for collection:

Method Page Method Page

Destructor 101 isFull 118

add 103 maxNumberOfElements 123

addAllFrom 104 newCursor 123

anyElement 112 numberOfElements 123

copy 112 removeAll 125

elementAt 101 removeAt 126

elementAtPosition 115 replaceAt 128

isBounded 117 setToFirst 129

isEmpty 117 setToNext 130

 Copyright IBM Corp. 1993, 1995 283

Collection

284 VisualAge C++ Open Class Library Reference

Equality Collection

Equality Collection

Because equality collection is an abstract class, it cannot be used to create any

objects. The equality collection defines the interfaces for the property of element

equality.

Derivation Collection

 Equality Collection

The following abstract classes are derived from equality collection:

¹ Equality key collection

¹ Equality sorted collection

The following concrete classes are defined by equality collection:

 ¹ Set

 ¹ Bag

 ¹ Equality Sequence

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of equality collection to the class hierarchy.

Header File The equality collection class is declared in the header file iaequal.h.

Members The equality collection class defines the following member functions, described in

“Introduction to Flat Collections” on page 97 , as virtual functions:

Method Page Method Page

Destructor 101 locateOrAdd 121

contains 113 numberOfOccurrences 124

containsAllFrom 113 remove 125

locate 118 removeAllOccurrences 126

locateNext 120

 Copyright IBM Corp. 1993, 1995 285

Equality Collection

286 VisualAge C++ Open Class Library Reference

Equality Key Collection

Equality Key Collection

Because equality key collection is an abstract class, it cannot be used to create any

objects. It defines the interfaces for the following properties:

 ¹ Element equality

 ¹ Key equality

Derivation Collection

 Equality Collection Key Collection

Equality Key Collection

Equality key sorted collection is an abstract class that is derived from equality key

collection. The following concrete classes are defined by equality key collection:

 ¹ Map

 ¹ Relation

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of equality key collection to the whole class hierarchy.

Header File The equality key collection class is declared in the header file iaeqkey.h.

Members All the members of equality key sorted collection are inherited from its base classes.

 Copyright IBM Corp. 1993, 1995 287

Equality Key Collection

288 VisualAge C++ Open Class Library Reference

Equality Key Sorted Collection

Equality Key

Sorted Collection

Equality key sorted collection is an abstract class that defines the interfaces for the

following properties:

 ¹ Element equality

 ¹ Key equality

 ¹ Sorted elements

Because equality key sorted collection is an abstract class, it cannot be used to create

any objects.

Derivation Equality key sorted collection is derived from the following three abstract classes:

¹ Key sorted collection

¹ Equality sorted collection

¹ Equality key sorted collection

For information on the bases of these classes, see the figure Figure 2 in the Open

Class Library User's Guide.

The following concrete classes are defined by equality key sorted collection:

 ¹ Sorted map

 ¹ Sorted relation

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of equality key sorted collection to the class hierarchy.

Header File The equality key sorted collection class is declared in the header file iaeqksrt.h.

Members All the members of equality key sorted collection are inherited from its base classes.

 Copyright IBM Corp. 1993, 1995 289

Equality Key Sorted Collection

290 VisualAge C++ Open Class Library Reference

Equality Sorted Collection

Equality Sorted Collection

Because equality sorted collection is an abstract class, it cannot be used to create any

objects. It defines the interfaces for the following properties:

 ¹ Element equality

 ¹ Sorted elements

Derivation Collection

 Ordered Collection

 Equality Collection Sorted Collection

Equality Sorted Collection

Equality key sorted collection is an abstract class that is derived from equality sorted

collection. The following concrete classes are defined by equality sorted collection:

 ¹ Sorted set

 ¹ Sorted bag

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of equality sorted collection to the class hierarchy.

Header File The equality sorted collection class is declared in the header file iaeqsrt.h.

Members All members of equality sorted collection are inherited from its base classes.

 Copyright IBM Corp. 1993, 1995 291

Equality Sorted Collection

292 VisualAge C++ Open Class Library Reference

Key Collection

Key Collection

Because key collection is an abstract class, it cannot be used to create any objects.

The key collection inherits from collection and defines the interfaces for the key

property.

Derivation Collection

 Key Collection

The following abstract classes are derived from key collection:

¹ Equality key collection

¹ Key sorted collection

The following concrete classes are defined by key collection:

 ¹ Key set

 ¹ Key bag

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of key collection to the class hierarchy.

Header File The key collection class is declared in the header file iakey.h.

Members The key collection class defines the following member functions, described in
“Introduction to Flat Collections” on page 97 , as virtual functions:

Method Page Method Page

Destructor 101 locateOrAddElementWithKey 122

addOrReplaceElementWithKey 109 numberOfDifferentKeys 123

containsAllKeysFrom 113 numberOfElementsWithKey 123

containsElementWithKey 113 removeAllElementsWithKey 126

elementWithKey 115 removeElementWithKey 127

key 118 replaceElementWithKey 129

locateElementWithKey 119 setToNextWithDifferentKey 130

locateNextElementWithKey 120

 Copyright IBM Corp. 1993, 1995 293

Key Collection

294 VisualAge C++ Open Class Library Reference

Key Sorted Collection

Key Sorted Collection

Because key sorted collection is an abstract class, it cannot be used to create any

objects. The key sorted collection inherits from sorted collection and key collection.

It defines the interfaces for the following properties:

 ¹ Key equality

 ¹ Sorted elements

Derivation Collection

 Ordered Collection

 Key Collection Sorted Collection

Key Sorted Collection

The equality key sorted collection is an abstract class that is derived from key sorted

collection. The following concrete classes are defined by key sorted collection:

¹ Key sorted set

¹ Key sorted bag

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of key sorted collection to the class hierarchy.

Header File The key sorted collection class is declared in the header file iaksrt.h.

Members The key sorted collection class inherits all member functions from its base classes.

 Copyright IBM Corp. 1993, 1995 295

Key Sorted Collection

296 VisualAge C++ Open Class Library Reference

Ordered Collection

Ordered Collection

Because ordered collection is an abstract class, it cannot be used to create any

objects. The ordered collection defines the interfaces for the property of ordered

elements.

Derivation Collection

 Ordered Collection

The following abstract classes are derived from ordered collection:

 ¹ Sorted collection

 ¹ Sequential collection

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of ordered collection to the class hierarchy.

Header File The ordered collection class is declared in the header file iaorder.h.

Members The ordered collection class defines the following member functions, described in

“Introduction to Flat Collections” on page 97, as pure virtual functions:

Method Page Method Page

Destructor 101 removeAtPosition 127

elementAtPosition 115 removeFirst 127

firstElement 117 removeLast 128

isFirst 117 setToLast 129

isLast 118 setToPosition 131

lastElement 118 setToPrevious 131

 Copyright IBM Corp. 1993, 1995 297

Ordered Collection

298 VisualAge C++ Open Class Library Reference

Sequential Collection

Sequential Collection

Because sequential collection is an abstract class, it cannot be used to create any

objects. The sequential collection inherits from ordered collection and defines the

interfaces for the properties of ordered elements.

Derivation Collection

 Ordered Collection

 Sequential Collection

The following concrete classes are defined by sequential collection:

 ¹ Sequence

 ¹ Equality sequence

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of sequential collection to the class hierarchy.

Header File The sequential collection class is declared in the header file iasqntl.h.

Members Sequential collection defines the following member functions as pure virtual

functions:
Method Page Method Page

Destructor 101 isFull 118

operator= 102 isLast 118

add 103 lastElement 118

addAllFrom 104 maxNumberOfElements 123

addAsFirst 105 newCursor 123

addAsLast 105 removeAll 125

addAsNext 106 removeAt 126

addAsPrevious 106 removeAtPosition 127

addAtPosition 107 removeFirst 127

allElementsDo 110 removeLast 128

anyElement 112 replaceAt 128

compare 112 setToFirst 129

elementAt 115 setToLast 129

elementAtPosition 115 setToNext 130

firstElement 117 setToPosition 131

isBounded 117 setToPrevious 131

isEmpty 117 sort 131

isFirst 117

 Copyright IBM Corp. 1993, 1995 299

Sequential Collection

300 VisualAge C++ Open Class Library Reference

Sorted Collection

Sorted Collection

Because sorted collection is an abstract class, it cannot be used to create any objects.

The sorted collection inherits from ordered collection and defines the interfaces for

the properties of sorted elements.

Derivation Collection

 Ordered Collection

 Sorted Collection

The following abstract classes are derived from sorted collection:

¹ Equality sorted collection

¹ Key sorted collection

 The figure “The Abstract Class Hierarchy” in the Open Class Library User's

Guide shows the relationship of sorted collection to the class hierarchy.

Header File The sorted collection class is declared in the header file iasrt.h.

Members The sorted collection class inherits all its members from its bases.

 Copyright IBM Corp. 1993, 1995 301

Sorted Collection

302 VisualAge C++ Open Class Library Reference

Data Type and Exception Classes

Part 7. Data Type and Exception Classes

The Data Type and Exception classes provide support for the exceptions, trace output,

messages, strings, notifications, and window geometry used by the applications you

develop.

Class Hierarchy . 305

I0String . 307

IAccessError . 319

IAssertionFailure . 321

IBase . 323

IBase::Version . 327

IBitFlag . 329

IBuffer . 333

ICLibErrorInfo . 347

IDate . 351

IDBCSBuffer . 361

IDeviceError . 371

IErrorInfo . 373

IException . 379

IException::TraceFn . 387

IExceptionLocation . 389

IGUIErrorInfo . 391

IInvalidParameter . 395

IInvalidRequest . 397

IMessageText . 399

INotificationEvent . 403

INotifier . 407

IObserver . 411

IObserverList . 413

IObserverList::Cursor . 417

IOutOfMemory . 419

IOutOfSystemResource . 421

IOutOfWindowResource . 423

IPair . 425

IPoint . 431

IPointArray . 435

IRange . 439

IRectangle . 441

IRefCounted . 453

IReference . 455

IResourceExhausted . 459

ISize . 461

 Copyright IBM Corp. 1993, 1995 303

Data Type and Exception Classes

IStandardNotifier . 463

IString . 469

IStringEnum . 501

IStringParser . 503

IStringParser::SkipWords . 513

IStringTest . 515

IStringTestMemberFn . 519

ISystemErrorInfo . 523

ITime . 527

ITrace . 533

IVBase . 541

IXLibErrorInfo . 543

304 VisualAge C++ Open Class Library Reference

Data Type and Exception Classes

Class Hierarchy

The data type and exception classes provide support for the exceptions, trace output,

messages, strings, and notifications used by the applications you develop.

IBase
 ├─IBitFlag
 ├─IDate
 ├─INotificationEvent
 ├─IPair
 │ ├─IPoint
 │ ├─IRange
 │ └─ISize
 ├─IPointArray
 ├─IRectangle
 ├─IReference
 ├─IString
 │ └─I0String
 ├─IStringParser
 ├─ITime
 └─IVBase
 ├─IObserverList::Cursor
 ├─IBuffer
 │ └─IDBCSBuffer
 ├─IErrorInfo
 │ ├─ICLibErrorInfo
 │ ├─IGUIErrorInfo
 │ ├─IMMErrorInfo
 │ ├─ISystemErrorInfo
 │ └─IXLibErrorInfo
 ├─INotifier
 │ └─IStandardNotifier
 ├─IObserver
 ├─IObserverList
 ├─IRefCounted
 ├─IStringTest
 │ └─IStringTestMemberFn
 ├─ITrace
 └─IStringParser::SkipWords
IException
 ├─IAccessError
 ├─IAssertionFailure
 ├─IDeviceError
 ├─IInvalidParameter
 ├─IInvalidRequest
 └─IResourceExhausted
 ├─IOutOfMemory
 ├─IOutOfSystemResource
 └─IOutOfWindowResource
IExceptionLocation
IMessageText
IStringEnum
IException::TraceFn
IBase::Version

 Copyright IBM Corp. 1993, 1995 305

Data Type and Exception Classes

306 VisualAge C++ Open Class Library Reference

I0String

I0String

Derivation IBase

 IString

 I0String

Inherited By None.

Header File i0string.hpp

Members Member Page Member Page

Constructor 308 lastIndexOf 314

adjustArg 317 lastIndexOfAnyBut 315

adjustResult 317 lastIndexOfAnyOf 315

change 310 notFound 318

charType 312 occurrencesOf 315

indexOf 313 operator [] 312

indexOfAnyBut 313 overlayWith 312

indexOfAnyOf 314 remove 312

indexOfPhrase 316 subString 313

indexOfWord 316 ˜I0String 310

insert 311

Objects of the I0String class are functionally equivalent to objects of the class IString

(p. 469) with one major distinction: I0Strings are indexed starting at 0 instead of 1.

Note: A consequence of starting indexes at 0 is that you can no longer use the

search functions as if they were Boolean. For example:

a0String.indexOf(anotherString) != a0String.includes(anotherString).

You can freely intermix IStrings and I0Strings in a program. You can assign objects

of one class values of the other type. You can pass objects of either class as

parameters to functions requiring the other type.

Warning: UINT_MAX is a reserved value for I0String. If you use UINT_MAX for

the startPos parameter in I0String functions, unpredictable results can occur.

 Copyright IBM Corp. 1993, 1995 307

I0String

 Public Functions

Constructors and Destructor
You can construct objects of this class in the following ways:

¹ Construct a NULL string.

¹ Construct a string with the ASCII representation of a given numeric value, supporting all

variations of integer and double.

¹ Construct a string with a copy of the specified character data, supporting ASCIIZ strings,

characters, and IStrings. The character data passed is converted to its ASCII representation.

¹ Construct a string with contents that consist of copies of up to three buffers of arbitrary data

(void*). Optionally, you only need to provide the length, in which case the IString contents

are initialized to a specified pad character. The default character is a blank.

These constructors can throw exceptions under the following conditions:

¹ Memory allocation errors

Many factors dynamically allocate space and these allocation requests may fail. If so, the

library translates memory allocation errors into exceptions. Generally, such errors do not

occur until you allocate an astronomical amount of storage.

 ¹ Out-of-range errors

These occur if you attempt to construct an IString with a length greater than UINT_MAX.

 Constructors

1 I0String(const void* pBuffer1, unsigned lenBuffer1,
char padCharacter = ' ');

Construct a string with contents from one buffer of arbitrary data (void*).

2 I0String();

Construct a NULL string.

3 I0String(const IString& aString);

Construct a string with a copy of the specified IString.

4 I0String(int);

Construct a string with the ASCII representation of an integer numeric value.

5 I0String(unsigned);

Construct a string with the ASCII representation of an unsigned numeric value.

6 I0String(long);

308 VisualAge C++ Open Class Library Reference

I0String

Construct a string with the ASCII representation of a long numeric value.

7 I0String(unsigned long);

Construct a string with the ASCII representation of an unsigned long numeric value.

8 I0String(short);

Construct a string with the ASCII representation of a short numeric value.

9 I0String(unsigned short);

Construct a string with the ASCII representation of an unsigned short numeric value.

10 I0String(double);

Construct a string with the ASCII representation of a double numeric value.

11 I0String(char);

Construct a string with a copy of the character. The string length is set to 1.

12 I0String(unsigned char);

Construct a string with a copy of the unsigned character. The string length is set to 1.

13 I0String(signed char);

Construct a string with a copy of the signed character. The string length is set to 1.

14 I0String(const char*);

Construct a string with a copy of the specified ASCIIZ string.

15 I0String(const unsigned char*);

Construct a string with a copy of the specified unsigned ASCIIZ string.

16 I0String(const signed char*);

Construct a string with a copy of the specified signed ASCIIZ string.

17 I0String(const void* pBuffer1, unsigned lenBuffer1,
const void* pBuffer2, unsigned lenBuffer2,
char padCharacter = ' ');

Construct a string with contents from two buffers of arbitrary data (void*).

18 I0String(const void* pBuffer1, unsigned lenBuffer1,
const void* pBuffer2, unsigned lenBuffer2,
const void* pBuffer3, unsigned lenBuffer3,
char padCharacter = ' ');

Construct a string with contents from three buffers of arbitrary data (void*).

 I0String 309

I0String

Destructor virtual ˜I0String();

 Editing
These members are reimplemented to treat the position arguments as 0-based.

change Changes occurrences of a specified pattern to a specified replacement string. You

can specify the number of changes to perform. The default is to change all

occurrences of the pattern. You can also specify the position in the receiver at which

to begin.

The parameters are the following:

inputString

The pattern string as a reference to an object of type IString. The library

searches for the pattern string within the receiver’s data.

pInputString

The pattern string as NULL-terminated string. The library searches for

the pattern string within the receiver’s data.

outputString

The replacement string as a reference to an object of type IString. It

replaces the occurrences of the pattern string in the receiver’s data.

pOutputString

The replacement string as a NULL-terminated string. It replaces the

occurrences of the pattern string in the receiver’s data.

startPos The position to start the search at within the receiver’s data. The default

is 0.

numChanges

The number of patterns to search for and change. The default is

UINT_MAX, which causes changes to all occurrences of the pattern.

I0String& change(const IString& aPattern,
const IString& aReplacement,
unsigned startPos = 0,
unsigned numChanges = (unsigned) UINT_MAX);

I0String& change(const IString& aPattern,
const char* pReplacement, unsigned startPos = 0,
unsigned numChanges = (unsigned) UINT_MAX);

I0String& change(const char* pPattern,
const IString& aReplacement,
unsigned startPos = 0,
unsigned numChanges = (unsigned) UINT_MAX);

310 VisualAge C++ Open Class Library Reference

I0String

I0String& change(const char* pPattern,
const char* pReplacement, unsigned startPos = 0,
unsigned numChanges = (unsigned) UINT_MAX);

static I0String change(const IString& aString,
const IString& inputString,
const IString& outputString,
unsigned startPos = 0,
unsigned numChanges = (unsigned) UINT_MAX);

static I0String change(const IString& aString,
const IString& inputString,
const char* pOutputString,
unsigned startPos = 0,
unsigned numChanges = (unsigned) UINT_MAX);

static I0String change(const IString& aString,
const char* pInputString,
const IString& outputString,
unsigned startPos = 0,
unsigned numChanges = (unsigned) UINT_MAX);

static I0String change(const IString& aString,
const char* pInputString,
const char* pOutputString,
unsigned startPos = 0,
unsigned numChanges = (unsigned) UINT_MAX);

insert Inserts the specified string at the specified location.

static I0String insert(const IString& aString,
const IString& anInsert,
unsigned index = (unsigned) UINT_MAX,
char padCharacter = ' ');

I0String& insert(const IString& aString,
unsigned index = (unsigned) UINT_MAX,
char padCharacter = ' ');

I0String& insert(const char* pString,
unsigned index = (unsigned) UINT_MAX,
char padCharacter = ' ');

static I0String insert(const IString& aString,
const char* pInsert,
unsigned index = (unsigned) UINT_MAX,
char padCharacter = ' ');

 I0String 311

I0String

overlayWith Replaces a specified portion of the receiver’s contents with the specified string. The

overlay starts in the receiver’s data at the index, which defaults to 0. If index is

beyond the end of the receiver’s data, it is padded with the pad character

(padCharacter).

static I0String overlayWith(const IString& aString,
const IString& anOverlay, unsigned index = 0,
char padCharacter = ' ');

I0String& overlayWith(const IString& aString,
unsigned index = 0, char padCharacter = ' ');

I0String& overlayWith(const char* pString,
unsigned index = 0, char padCharacter = ' ');

static I0String overlayWith(const IString& aString,
const char* pOverlay, unsigned index = 0,
char padCharacter = ' ');

remove Deletes the specified portion of the string (that is, the substring) from the receiver.

You can use this function to truncate an IString object at a specific position. For

example:

aString.remove(8);

removes the substring beginning at index 8 and takes the rest of the string as a

default.

I0String& remove(unsigned startPos);
I0String& remove(unsigned startPos, unsigned numChars);
static I0String remove(const IString& aString, unsigned startPos);
static I0String remove(const IString& aString,

unsigned startPos, unsigned numChars);

 Queries
These members are overridden to permit specification of the index as a 0-based value.

charType Returns the type of the character at the specified index.

IStringEnum::CharType charType(unsigned index) const;

operator [] Returns a reference to the specified character of the string.

Note: If you call the non-const version of this function with an index beyond the

end, the function extends the string.

const char& operator [](unsigned index) const;
char& operator [](unsigned index);

312 VisualAge C++ Open Class Library Reference

I0String

subString Returns the specified portion of the string (that is, the substring) of the receiver.

The parameters are the following:

startPos The starting position of the substring being extracted. If this position is

beyond the end of the data in the receiver, this function returns a NULL

IString.

length The length of the substring to be extracted. If the length extends beyond

the end of the receiver’s data, the returned IString is padded to the

specified length with padCharacter. If you do not specify length and it

defaults, this function uses the rest of the receiver’s data starting from

startPos for padding.

padCharacter

The character the function uses as padding if the requested length extends

beyond the end of the receiver’s data. The default padCharacter is a

blank.

You can use this function to truncate an IString object at a specific position. For

example:

aString = aString.subString(0, 7);

returns the substring concluding with index 7 and discards the rest of the string.

I0String subString(unsigned startPos) const;
I0String subString(unsigned startPos, unsigned len,

char padCharacter = ' ') const;

 Searches
These members are reimplemented to treat the starting position of the search as a 0-based index.

indexOf Returns the byte index of the first occurrence of the specified string within the

receiver. If there are no occurrences, 0 is returned. In addition to IStrings, you can

also specify a single character or an IStringTest (p. 515).

unsigned indexOf(const IString& aString, unsigned startPos = 0) const;
unsigned indexOf(const char* pString, unsigned startPos = 0) const;
unsigned indexOf(char aCharacter, unsigned startPos = 0) const;
unsigned indexOf(const IStringTest& aTest,

unsigned startPos = 0) const;

 indexOfAnyBut

Returns the index of the first character of the receiver that is not in the specified set

of characters. If there are no characters, 0 is returned. Alternatively, this function

returns the index of the first character that fails the test prescribed by a specified

IStringTest (p. 515) object.

 I0String 313

I0String

unsigned indexOfAnyBut(const IStringTest& aTest,
unsigned startPos = 0) const;

unsigned indexOfAnyBut(const IString& aString,
unsigned startPos = 0) const;

unsigned indexOfAnyBut(const char* pValidChars,
unsigned startPos = 0) const;

unsigned indexOfAnyBut(char validChar,
unsigned startPos = 0) const;

 indexOfAnyOf

Returns the index of the first character of the receiver that is a character in the

specified set of characters. If there are no characters, 0 is returned. Alternatively,

this function returns the index of the first character that passes the test prescribed by

a specified IStringTest (p. 515) object.

unsigned indexOfAnyOf(char searchChar, unsigned startPos = 0) const;

unsigned indexOfAnyOf(const IString& searchChars,
unsigned startPos = 0) const;

unsigned indexOfAnyOf(const char* pSearchChars,
unsigned startPos = 0) const;

unsigned indexOfAnyOf(const IStringTest& aTest,
unsigned startPos = 0) const;

lastIndexOf Returns the index of the last occurrence of the specified string or character. The

search starts at the position specified by startPos (inclusive) and proceeds backward.

The returned value is in the range 0 <= x <= startPos or I0String::notFound. The

default of UINT_MAX-1 starts the search at the end of the receiver’s string. If the

search target is not found, 0 is returned.

If you specify 0 for startPos, the search starts at the beginning of the string.

Therefore, because the search proceeds backward from its starting position, in this

case the search target must occur at the beginning of the string for it to be found.

unsigned lastIndexOf(char aCharacter,
unsigned endPos = (unsigned) (UINT_MAX - 1)) const;

unsigned lastIndexOf(const IString& aString,
unsigned endPos = (unsigned) (UINT_MAX - 1)) const;

unsigned lastIndexOf(const char* pString,
unsigned endPos = (unsigned) (UINT_MAX - 1)) const;

unsigned lastIndexOf(const IStringTest& aTest,
unsigned startPos = (unsigned) (UINT_MAX - 1)) const;

314 VisualAge C++ Open Class Library Reference

I0String

 lastIndexOfAnyBut

Returns the index of the last character not in the specified string or character. The

search starts at the position specified by startPos (inclusive) and proceeds backward.

The default of UINT_MAX-1 starts the search at the end of the receiver’s string. If

the search target is not found, 0 is returned.

If you specify 0 for startPos, the search starts at the beginning of the string.

Therefore, because the search proceeds backward from its starting position, in this

case the search target must occur at the beginning of the string for it to be found.

unsigned lastIndexOfAnyBut(const IString& validChars,
unsigned endPos = (unsigned) (UINT_MAX - 1)) const;

unsigned lastIndexOfAnyBut(const char* pValidChars,
unsigned endPos = (unsigned) (UINT_MAX - 1)) const;

unsigned lastIndexOfAnyBut(char validChar,
unsigned startPos = (unsigned) (UINT_MAX - 1)) const;

unsigned lastIndexOfAnyBut(const IStringTest& aTest,
unsigned endPos = (unsigned) (UINT_MAX - 1)) const;

 lastIndexOfAnyOf

Returns the index of the last character in the specified string or character. The search

starts at the position specified by startPos (inclusive) and proceeds backward. The

default of UINT_MAX-1 starts the search at the end of the receiver’s string. If the

search target is not found, 0 is returned.

If you specify 0 for startPos, the search starts at the beginning of the string.

Therefore, because the search proceeds backward from its starting position, in this

case the search target must occur at the beginning of the string for it to be found.

unsigned lastIndexOfAnyOf(const IString& searchChars,
unsigned endPos = (unsigned) (UINT_MAX - 1)) const;

unsigned lastIndexOfAnyOf(const char* pSearchChars,
unsigned endPos = (unsigned) (UINT_MAX - 1)) const;

unsigned lastIndexOfAnyOf(char searchChar,
unsigned startPos = (unsigned) (UINT_MAX - 1)) const;

unsigned lastIndexOfAnyOf(const IStringTest& aTest,
unsigned endPos = (unsigned) (UINT_MAX - 1)) const;

 occurrencesOf

Returns the number of occurrences of the specified IString, char*, char, or

IStringTest. If you just want a Boolean test, this is slower than IString::indexOf (p.

481).

 I0String 315

I0String

unsigned occurrencesOf(const IStringTest& aTest,
unsigned startPos = 0) const;

unsigned occurrencesOf(const IString& aString,
unsigned startPos = 0) const;

unsigned occurrencesOf(const char* pString,
unsigned startPos = 0) const;

unsigned occurrencesOf(char aCharacter, unsigned startPos = 0) const;

 Word Operations
These members are reimplemented to treat the result index as 0-based.

 indexOfPhrase

Returns the position of the first occurrence of the specified phrase in the receiver. If

the phrase is not found, 0 is returned.

unsigned indexOfPhrase(const IString& wordString,
unsigned startWord = 1) const;

indexOfWord Returns the index of the specified white-space-delimited word in the receiver. If the

word is not found, 0 is returned.

unsigned indexOfWord(unsigned wordNumber) const;

Inherited Public Functions

IString

asDebugInfo isASCII operator =

asDouble isBinaryDigits operator char *

asInt isControl operator signed char *

asString isDBCS operator unsigned char *

asUnsigned isDigits operator []

b2c isGraphics operator ‸

b2d isHexDigits operator ‸=

b2x isLike operator |

c2b isLowerCase operator |=

c2d isMBCS operator ˜

c2x isPrintable overlayWith

center isPunctuation remove

change isSBCS removeWords

316 VisualAge C++ Open Class Library Reference

I0String

IString

charType isUpperCase reverse

copy isValidDBCS rightJustify

d2b isValidMBCS size

d2c isWhiteSpace space

d2x lastIndexOf strip

includes lastIndexOfAnyBut stripBlanks

includesDBCS lastIndexOfAnyOf stripLeading

includesMBCS leftJustify stripLeadingBlanks

includesSBCS length stripTrailing

indexOf lengthOfWord stripTrailingBlanks

indexOfAnyBut lineFrom subString

indexOfAnyOf lowerCase translate

indexOfPhrase numWords upperCase

indexOfWord occurrencesOf word

insert operator & wordIndexOfPhrase

isAbbreviationFor operator &= words

isAlphabetic operator + x2b

isAlphanumeric operator += x2c

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

 Index Mapping
Use these members to convert arguments and results to the proper index base: 1 for arguments

(because it relies on IString) and 0 for results (because it is 0 based itself).

adjustArg Adjusts the specified index from 0- to 1-based.

static unsigned adjustArg(unsigned index);

adjustResult Adjusts a function result from 1- to 0-based.

static unsigned adjustResult(unsigned index);

 I0String 317

I0String

Inherited Protected Functions

IString

applyBitOp findPhrase isLike

buffer indexOfWord lengthOf

change initBuffer occurrencesOf

data insert overlayWith

defaultBuffer isAbbrevFor setBuffer

 Public Data

 Searches
These members are reimplemented to treat the starting position of the search as a 0-based index.

notFound You use this static constant in conjunction with the searching functions. It specifies

the value searching functions return indicating the search failed.

static const unsigned notFound;

Inherited Protected Data

IString

maxLong null nullBuffer

IBase

recoverable unrecoverable

318 VisualAge C++ Open Class Library Reference

IAccessError

IAccessError

Derivation IException

 IAccessError

Inherited By None.

Header File iexcbase.hpp

Members Member Page

Constructor 319

name 320

Objects of the IAccessError class represent an exception. When a member function

makes a request of the operating system or the presentation system that the system

cannot satisfy, the member function creates and throws an object of the IAccessError

class. If the operating system or the presentation system cannot satisfy the request

due to resource exhaustion, member functions create and throw objects of the class

IResourceExhausted (p. 459).

Note: Typically, if no other exception fits an error condition, the User Interface

Class Library creates and throws an object of the IAccessError class.

 Public Functions

 Constructor
You can construct objects of this class.

Constructor You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is unrecoverable.

¹ Using the macros discussed in IException (p. 379). The User Interface Class

Library provides these macros to make creating exceptions easier for you.

 Copyright IBM Corp. 1993, 1995 319

IAccessError

IAccessError(const char* errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

 Exception Type
Exception Type members provide support for determining the name (type) of the exception. This

is used for logging out an exception object's error information.

name Returns the name of the object's class.

virtual const char* name() const;

Inherited Public Functions

IException

addLocation locationAtIndex setSeverity

appendText locationCount setText

assertParameter logExceptionData setTraceFunction

errorCodeGroup name terminate

errorId setErrorCodeGroup text

isRecoverable setErrorId textCount

Inherited Public Data

IException

baseLibrary CLibrary operatingSystem

320 VisualAge C++ Open Class Library Reference

IAssertionFailure

IAssertionFailure

Derivation IException

 IAssertionFailure

Inherited By None.

Header File iexcbase.hpp

Members Member Page

Constructor 321

name 322

Objects of the IAssertionFailure class represent an exception. The IASSERT macro

expands to create and throw an object of the IAssertionFailure class if the specified

condition is not met. An assertion is a debugging tool you can use to assure a

condition is true. The class IException (p. 379) describes IASSERT and the other

exception-handling macros.

 Public Functions

 Constructor
You can construct objects of this class.

Constructor You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is unrecoverable.

¹ Using the macro IASSERT (p. 379). The User Interface Class Library provides

this macro to make creating exceptions easier for you.

IAssertionFailure(const char* errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

 Copyright IBM Corp. 1993, 1995 321

IAssertionFailure

 Exception Type
Exception Type members provide support for determining the name (type) of the exception. This

is used for logging out an exception object's error information.

name Returns the name of the object’s class.

virtual const char* name() const;

Inherited Public Functions

IException

addLocation locationAtIndex setSeverity

appendText locationCount setText

assertParameter logExceptionData setTraceFunction

errorCodeGroup name terminate

errorId setErrorCodeGroup text

isRecoverable setErrorId textCount

Inherited Public Data

IException

baseLibrary CLibrary operatingSystem

322 VisualAge C++ Open Class Library Reference

IBase

IBase

Derivation Inherits from none.

Inherited By IAccelerator IMenuItem

IBitFlag IMMAudioBuffer

ICnrAllocator INotificationEvent

ICoordinateSystem IPair

ICritSec IPointArray

IDate IProcedureAddress

IDDEActiveServer IRectangle

IEventData IReference

IEventParameter1 IResourceId

IEventParameter2 IString

IEventResult IStringGenerator

IFileDialog::Settings IStringParser

IFontDialog::Settings IStringParser::SkipWords

IFrameExtension ISWP

IGraphicBundle ISWPArray

IHandle ITime

IHelpWindow::Settings ITransformMatrix

IHighEventParameter IVBase

ILowEventParameter

Header File ibase.hpp

Members Member Page Member Page

asDebugInfo 324 recoverable 325

asString 324 setMessageFile 325

messageFile 324 unrecoverable 325

messageText 324 version 324

The IBase class encapsulates the set of names that otherwise would be in global

scope. All the classes in the library inherit from this class. Thus, you can use the

types and enumeration values defined here in those classes without the qualifying

IBase:: prefix.

Other code, not within the scope of IBase, must use either the qualified names or the

simplified synonyms which the User Interface Class Library declares in

ISYNONYM.HPP.

 Copyright IBM Corp. 1993, 1995 323

IBase

 Public Functions

 Diagnostics
Use these members to provide diagnostic information.

asDebugInfo This function obtains the diagnostic version of an object’s contents. You use this to

retrieve an IString representing a hex pointer to the object.

IString asDebugInfo() const;

asString This function obtains the standard version of an object’s contents.

IString asString() const;

version Returns the User Interface Class Library version using the major and minor data

members of the IBase::Version data structure. The minor number is incremented to

indicate the service level. This is a static member function.

static Version version();

 Messages
Use these members to query and change the message file that contains text used by the class

library when throwing exceptions.

messageFile This function returns the name of the message file used to load library exception

text.

static char* messageFile();

PM If you previously called setMessageFile (p. 325) with the name of a message file, the

file’s name is returned. Otherwise, the library checks the environment variable

ICLUI MSGFILE for the message file name. You can set the environment variable

using:

SET ICLUI MSGFILE=mymsgfile.msg

You must specify the file extension, typically .MSG. If you have not set the

environment variable, the library uses the default message file (CPPOOC3U.MSG).

Motif If you previously called setMessageFile (p. 325) with the name of a message file, the

file’s name is returned. The default file name is ibmcl.cat.

messageText Returns the message text associated with the specified message ID. You can

specify up to nine optional text strings to insert into the message.

324 VisualAge C++ Open Class Library Reference

IBase

static IMessageText messageText(unsigned long messageId,
const char* textInsert1 = 0, const char* textInsert2 = 0,
const char* textInsert3 = 0, const char* textInsert4 = 0,
const char* textInsert5 = 0, const char* textInsert6 = 0,
const char* textInsert7 = 0, const char* textInsert8 = 0,
const char* textInsert9 = 0);

PM If the message is found in a message segment that has been bound to the .EXE, the

message is loaded from the application. Otherwise, the message is searched for in the

message file described before. The search order for this file is as follows:

¹ The system root directory

¹ The current working directory

¹ Using the DPATH environment setting

¹ Using the APPEND environment setting

Motif The AIX release uses the message catalog file ibmcl.cat. You must add the /nls

subdirectory to your NLSPATH environment variable so the User Interface Class

Library can access the message catalog. In the Korn Shell, put the following

statement in your .profile file:

export NLSPATH=<targetdir>/nls/%N:$NLSPATH

where <targetdir> is the directory in which you installed the User Interface Class

Library.

 setMessageFile

Sets the message file from which the class library loads its exception text. The name

must include the file extension.

static void setMessageFile(const char* msgFileName);

 Protected Data

 Exception Severity
These data members are provided as synonyms for the IException::Severity enumeration, which

is used when constructing an IException object or an object of one of its derived classes.

recoverable Synonym for IException::recoverable. Use this when constructing an IException

object or one of its subclasses:

static IException::Severity recoverable;

 unrecoverable

Synonym for IException::unrecoverable. Use this when constructing an IException

object or one of its subclasses:

static IException::Severity unrecoverable;

 IBase 325

IBase

Nested Type Definitions

 BooleanConstants
BooleanConstants { false = 0, true = 1 };

The User Interface Class Library provides this enumeration to define constant values

for false and true. Never use true for an equality test because you should consider

any nonzero value to be true. This constant provides a useful mnemonic for setting a

Boolean.

Boolean typedef int Boolean;

General true or false type used as an argument or return value for many member

functions.

326 VisualAge C++ Open Class Library Reference

IBase::Version

IBase::Version

Derivation Inherits from none.

Inherited By None.

Header File ibase.hpp

Members Member Page

major 327

minor 327

This structure (data type) defines the version specifier, comprised of major and minor

version numbers.

 Public Data

major The major version level of the library. It is incrememnted by 1 for each new release

within a version.

unsigned short major;

minor The minor version level of the library. It starts at 0 for each version level and is

incrememnted by 1 for each CSD.

unsigned short minor;

 Copyright IBM Corp. 1993, 1995 327

IBase::Version

328 VisualAge C++ Open Class Library Reference

IBitFlag

IBitFlag

Derivation IBase

 IBitFlag

Inherited By I3StateCheckBox::Style IMenuBar::Style

IAnimatedButton::Style IMenuDrawItemHandler::DrawFlag

IBaseComboBox::Style IMenuItem::Attribute

IBaseListBox::Style IMenuItem::Style

IBaseSpinButton::Style IMessageBox::Style

IBitmapControl::Style IMultiCellCanvas::Style

IButton::Style IMultiLineEdit::Style

ICanvas::Style INotebook::clrFlags

ICheckBox::Style INotebook::PageSettings::Attribute

ICircularSlider::Style INotebook::Style

IComboBox::Style INumericSpinButton::Style

IContainerControl::Attribute IOutlineBox::Style

IContainerControl::Style IProgressIndicator::Style

IControl::Style IPushButton::Style

ICustomButton::Style IRadioButton::Style

IDMImage::Style IScrollBar::Style

IDrawingCanvas::Style ISetCanvas::Style

IEntryField::Style ISlider::Style

IFileDialog::Style ISpinButton::Style

IFontDialog::Style ISplitCanvas::Style

IFrameWindow::Style IStaticText::Style

IGraphicPushButton::Style ITextSpinButton::Style

IGroupBox::Style IToolBar::Style

IIconControl::Style IToolBarButton::Style

IListBox::Style IToolBarContainer::Style

IListBoxDrawItemHandler::DrawFlag IViewPort::Style

IMenu::Style IWindow::Style

Header File ibitflag.hpp

Members Member Page Member Page

Constructor 332 operator != 331

asExtendedUnsignedLong 331 operator == 331

asUnsignedLong 331 setValue 331

The IBitFlag class is the abstract base class for the bitwise styles and attributes used

by window and control classes in the User Interface Class Library. Because this class

in an abstract base class, you cannot create objects of this class.

 Copyright IBM Corp. 1993, 1995 329

IBitFlag

Deriving Classes from IBitFlag

Typically, you can declare classes derived from IBitFlag by using the macros that

accompany this class. Optionally, these macros lets you:

¹ Construct objects of one derived class from objects of another class derived from

IBitFlag.

¹ Combine objects of one derived class with objects of another class derived from

IBitFlag. For example, using the bitwise OR operator.

Macro Descriptions

You can use the following macros to declare classes derived from IBitFlag:

INESTEDBITFLAGCLASSDEF0 macro

Declares a logical base bitwise flag class scoped to another class. A logical

base bitwise class is a class of bitwise flag objects that cannot be constructed

from a bitwise flag object of another class.

INESTEDBITFLAGCLASSDEF1 macro

Declares a bitwise flag class whose objects can be constructed from an object

of another bitwise flag class. The library assumes both bitwise flag classes

have the same name and are scoped to another class.

INESTEDBITFLAGCLASSDEF2 macro

Declares a bitwise flag class whose objects can be constructed from an object

of two other bitwise flag classes. The library assumes all the bitwise flag

classes have the same name and are scoped to another class.

INESTEDBITFLAGCLASSDEF3 macro

Declares a bitwise flag class whose objects can be constructed from an object

of three other bitwise flag classes. The library assumes all the bitwise flag

classes have the same name and are scoped to another class.

INESTEDBITFLAGCLASSDEF4 macro

Declares a bitwise flag class whose objects can be constructed from an object

of four other bitwise flag classes. The library assumes all the bitwise flag

classes have the same name and are scoped to another class.

INESTEDBITFLAGCLASSFUNCS macro

Declares global functions that operate on a class of bitwise flag objects scoped

to another class. The functions are global, rather than member functions, to

allow for commutative operations between objects of different bitwise flag

classes.

Note: Do not use this macro to define global functions for a logical base style

class (one declared with the INESTEDBITFLAGCLASSDEF0 macro).

330 VisualAge C++ Open Class Library Reference

IBitFlag

 Public Functions

 Comparisons
Use these members to compare bitflag values.

operator != Used to compare two bitflag values for inequality.

Boolean operator !=(const IBitFlag& rhs) const;

operator == Used to compare two bitflag values for equality.

Boolean operator ==(const IBitFlag& rhs) const;

 Queries
Use these members to return the value of the object.

 asExtendedUnsignedLong

Converts the upper 32-Bits of the object to an unsigned long value.

unsigned long asExtendedUnsignedLong() const;

 asUnsignedLong

Converts the object to an unsigned long value.

unsigned long asUnsignedLong() const;

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

 Assignment
Use this member to set the value of the object.

setValue You can use this function to assign an unsigned long value for the system styles to

the object, and optionally an unsigned long value that represents extended styles.

IBitFlag& setValue(unsigned long value,
unsigned long extendedValue = 0);

 IBitFlag 331

IBitFlag

 Constructor
You can only construct objects of this class from an unsigned long value, which represents the

styles accepted by the system, and, optionally, an unsigned long value that represents extended

styles.

Note: This constructor is protected because objects derived from this class should not be

arbitrarily constructed. To provide type safety for window and control constructors, you

can only specify the following:

¹ Existing style objects

¹ Existing attribute objects

¹ Combinations of these objects

Constructor IBitFlag(unsigned long value, unsigned long extendedValue = 0);

Inherited Protected Data

IBase

recoverable unrecoverable

332 VisualAge C++ Open Class Library Reference

IBuffer

IBuffer

Derivation IBase

 IVBase

 IBuffer

Inherited By IDBCSBuffer

Header File ibuffer.hpp

Members Member Page Member Page

Constructor 344 isHexDigits 343

addRef 339 isLowerCase 343

allocate 344 isMBCS 337

asDebugInfo 334 isPrintable 343

center 334 isPunctuation 343

change 334 isSBCS 337

charType 337 isUpperCase 343

checkAddition 338 isValidDBCS 337

checkMultiplication 338 isValidMBCS 337

className 345 isWhiteSpace 343

compare 334 lastIndexOf 340

contents 337 lastIndexOfAnyBut 341

copy 335 lastIndexOfAnyOf 341

dbcsTable 345 leftJustify 335

defaultBuffer 337 length 337

fromContents 337 lowerCase 335

includesDBCS 336 newBuffer 338

includesMBCS 336 next 338

includesSBCS 336 null 338

indexOf 340 operator delete 344

indexOfAnyBut 340 operator new 344

indexOfAnyOf 340 overflow 339

initialize 344 overlayWith 335

insert 335 remove 335

isAlphabetic 342 removeRef 339

isAlphanumeric 342 reverse 335

isASCII 342 rightJustify 336

isControl 342 setDefaultBuffer 339

isDBCS 337 startBackwardsSearch 345

isDigits 342 startSearch 345

isGraphics 342 strip 336

 Copyright IBM Corp. 1993, 1995 333

IBuffer

Member Page Member Page

subString 341 useCount 338

translate 336 ˜IBuffer 344

upperCase 336

Objects of the IBuffer class define the contents of an IString (p. 469).

 Public Functions

 Comparisons
Use these members to compare the IBuffer's contents to some other character array.

compare Compares the buffer’s contents to the contents of the specified character array.

virtual Comparison compare(const void* p, unsigned len) const;

 Diagnostics
Use these members to provide diagnostic information about the buffer.

asDebugInfo Returns information about the buffer’s internal representation that you can use for

debugging.

virtual IString asDebugInfo() const;

 Editing
These members are called by the corresponding IString members to edit the buffer's contents.

center Centers the receiver within a string of the specified length.

virtual IBuffer* center(unsigned newLen, char padCharacter);

change Changes occurrences of a specified pattern to a specified replacement string. You

can specify the number of changes to perform. The default is to change all

occurrences of the pattern. You can also specify the position in the receiver at which

to begin.

The parameters are the following:

pSource The pattern string as NULL-terminated string. The library searches for

the pattern string within the receiver’s data.

sourceLen The length of the source string.

pTarget The target string as a NULL-terminated string. It replaces the

occurrences of the pattern string in the receiver’s data.

334 VisualAge C++ Open Class Library Reference

IBuffer

targetLen The length of the target string.

startPos The position to start the search at within the target’s data.

numChanges

The number of patterns to search for and change.

virtual IBuffer* change(const char* pSource,
unsigned sourceLen, const char* pTarget,
unsigned targetLen, unsigned startPos,

 unsigned numChanges);

copy Replaces the receiver’s contents with a specified number of replications of itself.

virtual IBuffer* copy(unsigned numCopies);

insert Inserts the specified string after the specified location.

virtual IBuffer* insert(const char* pInsert,
unsigned insertLen, unsigned pos, char padCharacter);

leftJustify Left-justifies the receiver in a string of the specified length. If the new length

(newLen) is larger than the current length, the string is extended by the pad character

(padCharacter). The default pad character is a blank.

virtual IBuffer* leftJustify(unsigned newLen, char padCharacter);

lowerCase Translates all upper-case letters in the receiver to lower-case.

virtual IBuffer* lowerCase();

overlayWith Replaces a specified portion of the receiver’s contents with the specified string. If

pos is beyond the end of the receiver’s data, it is padded with the pad character

(padCharacter).

virtual IBuffer* overlayWith(const char* overlay,
unsigned len, unsigned pos, char padCharacter);

remove Deletes the specified portion of the string (that is, the substring) from the receiver.

You can use this function to truncate an IString object at a specific position. For

example:

aString.remove(8);

removes the substring beginning at index 8 and takes the rest of the string as a

default.

virtual IBuffer* remove(unsigned startPos, unsigned numChars);

reverse Reverses the receiver’s contents.

virtual IBuffer* reverse();

 IBuffer 335

IBuffer

rightJustify Right-justifies the receiver in a string of the specified length. If the receiver’s data

is shorter than the requested length (newLen), it is padded on the left with the pad

character (padCharacter). The default pad character is a blank.

virtual IBuffer* rightJustify(unsigned newLen, char padCharacter);

strip Strips both leading and trailing character or characters. You can specify the

character or characters as the following:

¹ A char* array

¹ An IStringTest (p. 515) object

The default is white space.

virtual IBuffer* strip(const IStringTest& aTest,
 IStringEnum::StripMode mode);

virtual IBuffer* strip(const char* pChars, unsigned len,
 IStringEnum::StripMode mode);

translate Converts all of the receiver’s characters that are in the first specified string to the

corresponding character in the second specified string.

virtual IBuffer* translate(const char* pInputChars,
unsigned inputLen, const char* pOutputChars,
unsigned outputLen, char padCharacter);

upperCase Translates all lower-case letters in the receiver to upper-case.

virtual IBuffer* upperCase();

 NLS Testing
Corresponding IString members use these members to test the buffer's contents. These tests are

character-set-specific.

 includesDBCS

If any characters are DBCS (double-byte character set), true is returned.

virtual Boolean includesDBCS() const;

 includesMBCS

If any characters are MBCS (multiple-byte character set), true is returned.

virtual Boolean includesMBCS() const;

 includesSBCS

If any characters are SBCS (single-byte character set), true is returned.

virtual Boolean includesSBCS() const;

336 VisualAge C++ Open Class Library Reference

IBuffer

isDBCS If all the characters are DBCS, true is returned.

virtual Boolean isDBCS() const;

isMBCS If all the characters are MBCS, true is returned.

virtual Boolean isMBCS() const;

isSBCS If all the characters are SBCS, true is returned.

virtual Boolean isSBCS() const;

isValidDBCS If no DBCS characters have a 0 second byte, true is returned.

virtual Boolean isValidDBCS() const;

isValidMBCS If no MBCS characters have a 0 second byte, true is returned.

virtual Boolean isValidMBCS() const;

 Queries
Use these members to access various attributes of a buffer.

charType Returns the type of a character at the specified index.

virtual IStringEnum::CharType charType(unsigned index) const;

contents Returns the address of the buffer’s contents.

const char* contents() const;
char* contents();

defaultBuffer Returns the address of the NULL buffer for the class. This is a static function.

static IBuffer* defaultBuffer();

 fromContents

Returns the address of IBuffer using the specified pointer to its contents. This is a

static function.

Note: It is important that pBuffer point to the actual beginning of data from an

IBuffer object. The library can return only values from the contents function

of this class. Otherwise, if the returned IBuffer pointer is used, errors could

occur.

static IBuffer* fromContents(const char* pBuffer);

length Returns the length of the buffer’s contents.

unsigned length() const;

 IBuffer 337

IBuffer

next Returns a pointer to the next character, not the next byte, in the buffer.

virtual char* next(const char* prev);
virtual const char* next(const char* prev) const;

null Returns the address of the NULL buffer.

IBuffer* null() const;

useCount Returns the number of IStrings referring to the buffer.

unsigned useCount() const;

 Reallocation
Use these members to manage reallocation of IBuffers when the contents of strings are modified.

 checkAddition

Verifies that the two parameters, when added, do not overflow an unsigned integer.

static unsigned checkAddition(unsigned addend1, unsigned addend2);

 checkMultiplication

Verifies that the two parameters, when multiplied, do not overflow an unsigned

integer.

static unsigned checkMultiplication(unsigned factor1, unsigned factor2);

newBuffer Allocates a new buffer and initializes it with the contents of up to three specified

buffers.

The parameters are the following:

p1 The pointer to the first part to be copied into the data area of the new

buffer. The first part is len1 bytes long. If the pointer is NULL, the

padChar is copied for len1 bytes.

len1 The length, in bytes, of the first part to be copied into the new buffer.

p2 A pointer to the second part, immediately following the first part, to be

copied into the data area of the new buffer. The second part is len2 bytes

long. If the pointer is NULL, the padChar is copied for len2 bytes. If

nothing is specified for p2, it is NULL.

len2 The length, in bytes, of the second part to be copied into the new buffer.

If nothing is specified for len2, it defaults to 0 bytes.

338 VisualAge C++ Open Class Library Reference

IBuffer

p3 The pointer to the third part, immediately following the second part, to be

copied into the data area of the new buffer. The third part is len3 bytes

long. If the pointer is NULL, the padChar is copied for len3 bytes. If

nothing is specified for p3, it is NULL.

len3 The length, in bytes, of the third part to be copied into the new buffer. If

nothing is specified for len3, it defaults to 0 bytes.

padChar The character to use as the pad in the cases of p1, p2, or p3 being NULL.

If you do not specify a padChar, it defaults to the character 0.

Note: If the sum of len1, len2, and len3 is 0, a reference to the NULL buffer for

this class is added and the address is returned.

IBuffer* newBuffer(const void* p1, unsigned len1,
const void* p2 = 0, unsigned len2 = 0,
const void* p3 = 0, unsigned len3 = 0,
char padChar = 0) const;

overflow Throws an exception when IBuffer::checkAddition (p. 338) or

IBuffer::checkMultiplication (p. 338) detect an overflow.

static unsigned overflow();

 Exception

IInvalidRequest. You made an IBuffer request causing an overflow. Typically, this

occurs during object construction or during an operation which grows an underlying

IBuffer object. Likely culprits might be an IBuffer::newBuffer or IString::change call.

 setDefaultBuffer

Sets the default (NULL) buffer. The specified buffer must be comprised of a single

NULL byte.

static void setDefaultBuffer(IBuffer* newDefaultBuffer);

 Reference Counting
Use these members to manage the buffer reference count.

addRef Increments the usage count.

void addRef();

removeRef Decrements the usage count and deletes the buffer when the usage count goes to 0.

void removeRef();

 IBuffer 339

IBuffer

 Searches
These members are called by the corresponding IString members to search the buffer's contents.

indexOf Returns the byte index of the first occurrence of the specified string within the

receiver. If there are no occurrences, 0 is returned.

virtual unsigned indexOf(const char* pString,
unsigned len, unsigned startPos = 1) const;

virtual unsigned indexOf(const IStringTest& aTest,
unsigned startPos = 1) const;

 indexOfAnyBut

Returns the index of the first character of the receiver that is not in the specified set

of characters. If there are no characters, 0 is returned. Alternatively, this function

returns the index of the first character that fails the test prescribed by a specified

IStringTest (p. 515) object.

virtual unsigned indexOfAnyBut(const IStringTest& aTest,
unsigned startPos = 1) const;

virtual unsigned indexOfAnyBut(const char* pString, unsigned len,
unsigned startPos = 1) const;

 indexOfAnyOf

Returns the index of the first character of the receiver that is a character in the

specified set of characters. If there are no characters, 0 is returned. Alternatively,

this function returns the index of the first character that passes the test prescribed by

a specified IStringTest (p. 515) object.

virtual unsigned indexOfAnyOf(const char* pString,
unsigned len, unsigned startPos = 1) const;

virtual unsigned indexOfAnyOf(const IStringTest& aTest,
unsigned startPos = 1) const;

lastIndexOf Returns the index of the last occurrence of the specified string or character. The

search starts at the position specified by startPos (inclusive) and proceeds backward.

The returned value is in the range 0 <= x <= startPos. The default of 0 starts the

search at the end of the receiver’s string. If the search target is not found, 0 is

returned.

If you specify 0 for startPos, this function returns 0 indicating the search target was

not found.

340 VisualAge C++ Open Class Library Reference

IBuffer

virtual unsigned lastIndexOf(const char* pString,
unsigned len, unsigned startPos = 0) const;

virtual unsigned lastIndexOf(const IStringTest& aTest,
unsigned startPos = 0) const;

 lastIndexOfAnyBut

Returns the index of the last character not in the specified string or character. The

search starts at the position specified by startPos (inclusive) and proceeds backward.

The default of 0 starts the search at the end of the receiver’s string. If the search

target is not found, 0 is returned.

If you specify 0 for startPos, this function returns 0 indicating the search target was

not found.

virtual unsigned lastIndexOfAnyBut(const IStringTest& aTest,
unsigned startPos = 0) const;

virtual unsigned lastIndexOfAnyBut(const char* pString,
unsigned len, unsigned startPos = 0) const;

 lastIndexOfAnyOf

Returns the index of the last character in the specified string or character. The search

starts at the position specified by startPos (inclusive) and proceeds backward. The

default of 0 starts the search at the end of the receiver’s string. If the search target is

not found, 0 is returned.

If you specify 0 for startPos, this function returns 0 indicating the search target was

not found.

virtual unsigned lastIndexOfAnyOf(const IStringTest& aTest,
unsigned startPos = 0) const;

virtual unsigned lastIndexOfAnyOf(const char* pString,
unsigned len, unsigned startPos = 0) const;

 Subset
Use this member when a subset of characters is required.

subString Returns a new IBuffer, of the same type as the previous one, containing the

specified subset of characters.

The parameters are the following:

startPos The index at which to start the substring. If startPos is 0, the function

uses position 1. If startPos is beyond the end of the buffer, nothing is

copied. The buffer is filled out by the specified padding character.

 IBuffer 341

IBuffer

len The length to copy from the buffer. If the length extends beyond the end

of the buffer, only the portion up to the end is copied. The buffer is then

padded. If len is 0, a reference to the NULL buffer is returned.

padCharacter

Specifies the character the function uses to pad the copied string if less

than len bytes have been copied from the source buffer.

virtual IBuffer* subString(unsigned startPos,
unsigned len, char padCharacter) const;

 Testing
Corresponding IString members use these members to test the buffer's contents.

isAlphabetic If all the characters are in {'A'-'Z','a'-'z'}, true is returned.

virtual Boolean isAlphabetic() const;

 isAlphanumeric

If all the characters are in {'A'-'Z','a'-'z','0'-'9'}, true is returned.

virtual Boolean isAlphanumeric() const;

isASCII If all the characters are in {0x00-0x7F}, true is returned.

virtual Boolean isASCII() const;

isControl Returns true if all the characters are control characters.

Control characters are defined by the iscntrl() C Library function as defined in the

cntrl locale source file and in the cntrl class of the LC_CTYPE category of the

current locale. For example, on ASCII operating systems, control characters are those

in the range {0x00-0x1F,0x7F}.

virtual Boolean isControl() const;

isDigits If all the characters are in {'0'-'9'}, true is returned.

virtual Boolean isDigits() const;

isGraphics Returns true if all the characters are graphics characters.

Graphics characters are printable characters excluding the space character, as defined

by the isgraph() C Library function in the graph locale source file and in the graph

class of the LC_CTYPE category of the current locale. For example, on ASCII

operating systems, graphics characters are those in the range {0x21-0x7E}.

virtual Boolean isGraphics() const;

342 VisualAge C++ Open Class Library Reference

IBuffer

isHexDigits If all the characters are in {'0'-'9','A'-'F','a'-'f'}, true is returned.

virtual Boolean isHexDigits() const;

isLowerCase If all the characters are in {'a'-'z'}, true is returned.

virtual Boolean isLowerCase() const;

isPrintable Returns true if all the characters are printable characters.

Printable characters are defined by the isprint() C Library function as defined in the

print locale source file and in the print class of the LC_CTYPE category of the

current locale. For example, on ASCII systems, printable characters are those in the

range {0x20-0x7E}.

virtual Boolean isPrintable() const;

 isPunctuation

If none of the characters is white space, a control character, or an alphanumeric

character, true is returned.

virtual Boolean isPunctuation() const;

isUpperCase If all the characters are in {'A'-'Z'}, true is returned.

virtual Boolean isUpperCase() const;

 isWhiteSpace

Returns true if all the characters are whitespace characters.

Whitespace characters are defined by the isspace() C Library function as defined in

the space locale source file and in the space class of the LC_CTYPE category of the

current locale. For example, on ASCII systems, printable characters are those in the

range {0x09-0x0D,0x20}.

virtual Boolean isWhiteSpace() const;

Inherited Public Functions

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 IBuffer 343

IBuffer

 Protected Functions

 Allocation
Use these protected members to allocate and deallocate IBuffer objects.

allocate Returns a new buffer of the specified length.

virtual IBuffer* allocate(unsigned bufLength) const;

operator

delete

Deallocates a buffer.

void operator delete(void* p, const char* filename, size_t linenum);
void operator delete(void* p);

operator new Allocates space for a buffer of the specified length. The returned pointer is an area

the size of an IBuffer large enough to hold data of size bufLen.

void* operator new(size_t t, const char* filename,
size_t linenum, unsigned bufLen);

void* operator new(size_t t, unsigned bufLen);

Constructor and Destructor
Constructors for this class require the length of the buffer, which is the value to be stored in the

len data member.

Constructor IBuffer(unsigned newLen);

Initializes the reference count and null terminates the buffer.

Destructor ˜IBuffer();

Destructor, does nothing.

 Implementation
This member helps implement this class.

initialize Initializes (sets up a NULL buffer, a DBCS table, and so forth). This is a static

function.

static IBuffer* initialize();

344 VisualAge C++ Open Class Library Reference

IBuffer

 Protected Queries
This member helps implement this class.

className Returns the name of the class (IBuffer).

virtual const char* className() const;

 Search Initialization
These members help implement this class.

 startBackwardsSearch

Initializes a search of type IString::lastIndexOf (p. 489).

¹ If searchLen is greater than the length of the buffer, 0 is returned indicating an

invalid search request.

¹ If the starting position is 0 or beyond the last searchLen bytes of the buffer, the

position where the last searchLen bytes start in the buffer is returned.

¹ If the starting position is 1 through the last searchLen bytes, the value of

startingPos is returned.

virtual unsigned startBackwardsSearch(unsigned startPos,
unsigned searchLen) const;

startSearch Initializes a search of type IString::indexOf (p. 481).

¹ If startPos is 0, the search uses a starting position of 1.

¹ If the specified startPos and searchLen result in an invalid search, 0 is returned.

This usually occurs when the sum of startPos and searchLen is greater than the

size of the buffer.

virtual unsigned startSearch(unsigned startPos,
unsigned searchLen) const;

 Public Data

 DBCS Table
Use this character array member to test characters for DBCS validity.

dbcsTable Table of DBCS first-byte flags ('dbcsTable[n] == 1' if and only if n is a valid DBCS

first byte).

static char dbcsTable [256]; Supported On:

PM

 IBuffer 345

IBuffer

Inherited Protected Data

IBase

recoverable unrecoverable

Nested Type Definitions

Comparison typedef enum { equal , greaterThan , lessThan } Comparison;

These enumerators specify the possible valid return codes from IBuffer::compare (p.

334).

equal

The buffer’s contents are equal to the contents of the specified character array.

greaterThan

The buffer’s contents are greater than the contents of the specified character

array.

lessThan

The buffer’s contents are less than the contents of the specified character array.

346 VisualAge C++ Open Class Library Reference

ICLibErrorInfo

ICLibErrorInfo

Derivation IBase

 IVBase

 IErrorInfo

 ICLibErrorInfo

Inherited By None.

Header File iexcept.hpp

Members Member Page Member Page

Constructor 348 text 348

errorId 348 throwCLibError 349

isAvailable 348 ˜ICLibErrorInfo 348

operator const char * 348

Objects of the ICLibErrorInfo class represent error information. When a C library

call results in an error condition, objects of the ICLibErrorInfo class are created. The

per thread global variable errno is used to obtain the error text.

The library provides the ITHROWCLIBERROR macro for throwing exceptions

constructed with ICLibErrorInfo information. This macro has the following

parameters:

location The name of the C function returning the error code, the name of the file

the function is in, and the function’s line number.

name Use the enumeration IErrorInfo::ExceptionType (p. 377) to specify the

type of the exception. The default is accessError.

severity Use the enumeration IException::Severity (p. 386) to specify the severity

of the error. The default is recoverable.

This macro generates code that calls throwCLibError (p. 349), which does the

following:

1. Creates an ICLibErrorInfo object

2. Uses the object to create an IException object

3. Adds the CLibrary error group to the object

 Copyright IBM Corp. 1993, 1995 347

ICLibErrorInfo

4. Adds location information

5. Logs the exception data

6. Throws the exception

 Public Functions

Constructor and Destructor
You can construct and destruct objects of this class. You cannot copy or assign objects of this

class.

Constructor ICLibErrorInfo(const char* CLibFunctionName = 0);

You can only construct objects of this class using the default constructor.

Note: If the constructor cannot load the error text, the library provides the following

default text: "No error text is available."

CLibFunctionName

(Optional) The name of the failing C library function. If you specify

CLibFunctionName, the constructor prefixes it to the error text.

Destructor virtual ˜ICLibErrorInfo();

 Error Information
Use these members to return the error information provided by objects of this class.

errorId Returns the value of errno, which you can use to obtain the errno information.

virtual unsigned long errorId() const;

isAvailable If the error text is available, true is returned.

virtual Boolean isAvailable() const;

operator

const char *

Returns the error text.

virtual operator const char *() const;

text Returns the error text.

virtual const char* text() const;

348 VisualAge C++ Open Class Library Reference

ICLibErrorInfo

 Throw Support
Use these members to support the throwing of exceptions.

 throwCLibError

Creates an ICLibErrorInfo object and uses the text from it to the following:

1. Create an exception object

2. Add the location information to it

3. Log the exception data

4. Throw the exception

functionName

The name of the function where the exception occurred.

location An IExceptionLocation (p. 389) object containing the following:

 ¹ Function name

 ¹ File name

¹ Line number where the function is called

name Use the enumeration IErrorInfo::ExceptionType (p. 377) to specify the

type of the exception. The default is accessError.

severity Use the enumeration IException::Severity (p. 386) to specify the severity

of the error. The default is recoverable.

static void throwCLibError(const char* functionName,
const IExceptionLocation& location,
IErrorInfo::ExceptionType name = accessError,
IException::Severity severity = recoverable);

Inherited Public Functions

IErrorInfo

errorId isAvailable operator const char *

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 ICLibErrorInfo 349

ICLibErrorInfo

Inherited Protected Data

IBase

recoverable unrecoverable

350 VisualAge C++ Open Class Library Reference

IDate

IDate

Derivation IBase

 IDate

Inherited By None.

Header File idate.hpp

Members Member Page Member Page

Constructor 353 monthOfYear 357

asCDATE 353 operator != 352

asString 354 operator + 356

dayName 354 operator += 356

dayOfMonth 354 operator - 356

dayOfWeek 354 operator -= 357

dayOfYear 354 operator < 352

daysInMonth 356 operator <= 352

daysInYear 356 operator == 352

initialize 358 operator > 352

isLeapYear 357 operator >= 352

isValid 357 today 353

julianDate 353 year 358

monthName 356

Objects of the IDate class represent specified dates. This class also provides general

day and date-handling functions. Externally, dates consist of three pieces of

information:

 ¹ A year

¹ A month within that year

¹ A day within that month

The library also lets you specify the day within the year.

The IDate class returns language-sensitive information, such as names of days and

months, in the language defined by the user's system. See the description of the

standard C function setlocale in the VisualAge C++: C Library Reference for

information about setting the locale.

 Copyright IBM Corp. 1993, 1995 351

IDate

 Public Functions

 Comparisons
Use these members to compare two IDates. Use any of the full complement of comparison

operators and applying the natural meaning.

operator != If the IDate objects represent different dates, true is returned.

Boolean operator !=(const IDate& aDate) const;

operator < If the left-hand operand represents a date prior to the date represented by the

right-hand operand, true is returned.

Boolean operator <(const IDate& aDate) const;

operator <= If the left-hand operand represents a date prior to or identical to the date represented

by the right-hand operand, true is returned.

Boolean operator <=(const IDate& aDate) const;

operator == If the IDate objects represent the same date, true is returned.

Boolean operator ==(const IDate& aDate) const;

operator > If the left-hand operand represents a date subsequent to the date represented by the

right-hand operand, true is returned.

Boolean operator >(const IDate& aDate) const;

operator >= If the left-hand operand represents a date subsequent to or identical to the date

represented by the right-hand operand, true is returned.

Boolean operator >=(const IDate& aDate) const;

 Constructors
You can construct objects of this class in the following ways:

¹ Use the default constructor, which returns the current day.

¹ Give the year, month, and day for the desired day. These parameters can be in either

month/day/year or day/month/year order.

¹ Give the year and day of the year for the desired day.

¹ Use IDate::today (p. 353) to return the current date.

¹ Copy another IDate object.

¹ Give the Julian day number, as a long.

¹ Give a container details CDATE structure.

352 VisualAge C++ Open Class Library Reference

IDate

 Constructors

1 IDate();

Using the default constructor returns the current day.

2 IDate(Month aMonth, int aDay, int aYear);

You use this constructor when passing parameters in month/day/year order.

3 IDate(int aDay, Month aMonth, int aYear);

You use this constructor when passing parameters in day/month/year order.

4 IDate(int aYear, int aDay);

This constructor constructs an IDate from the year and day of the year. The day of

year is the number of days starting at January 1.

5 IDate(const IDate& aDate);

This constructor constructs an IDate by copying another IDate object.

6 IDate(unsigned long julianDayNumber);

Use this constructor to construct an IDate from a Julian day number, as a long.

7 IDate(const _CDATE& cDate); Supported On:

PM

You use this constructor to construct an IDate from a container details CDATE

structure.

 Conversions
Use these members to retrieve other representations of the date.

asCDATE Returns a container CDATE structure for the date.

_CDATE asCDATE() const; Supported On:

PM

julianDate Returns the Julian day number of the receiver IDate. This function uses the true

definition of a Julian date, which means it returns the number of days from January 1,

4713 B.C.

unsigned long julianDate() const;

 Current Date
Use this member when you need the current date.

today Returns the current date. This static function can be used as an IDate constructor.

static IDate today();

 IDate 353

IDate

 Day Queries
Use these members to access the day portion of an IDate object.

dayName Returns the name of the receiver's day of the week:

¹ The first version of dayName accepts a specified day. It returns the name of the

day of the week that is equivalent to the index value in aDay.

¹ The second version of dayName accepts no parameters. It returns the name of

the receiver's day of the week, such as "Monday".

IString dayName() const;
static IString dayName(DayOfWeek aDay);

dayOfMonth Returns the day in the receiver's month as an integer from 1 to 31.

int dayOfMonth() const;

dayOfWeek Returns the index of the receiver's day of the week: Monday through Sunday.

DayOfWeek dayOfWeek() const;

dayOfYear Returns the day in the receiver's year as an integer from 1 to 366.

int dayOfYear() const;

 Diagnostics
These members provide an IString representation for an IDate object and the capability to output

the object to a stream. The formats include both mm-dd-yy and strftime conversion

specifications. Often, you use these members to write trace information when debugging.

asString Returns the IDate as a string. The default is formatted per the system (mm-dd-yy).

The alternate version of asString lets you use any strftime conversion specifiers. For

example, "%x" yields a string such as "Apr 10 1959".

There are two implementations of asString. The parameters are the following:

yearFmt Specifies how the system will display the year. If you do not specify the

format, the default is yy. Use the enumeration IDate::YearFormat for

valid yearFmt values.

fmt Specifies the conversion specifier, which is a character string you can use

to describe how to output the date. Use the date specifiers that are valid

in the C function strftime. The conversion specifiers that apply to IDate

and their meanings are listed in the following table. ITime::asString (p.

529) provides the conversion specifiers that apply to ITime. For more

information about the strftime function, refer to the VisualAge C++: C

Library Reference.

354 VisualAge C++ Open Class Library Reference

IDate

For example, if you want to return the month, day, and year (without the

century), construct an IDate object, and then call asString as follows:

asString("%m:%d:%y")

IString asString(const char* fmt) const;
IString asString(YearFormat yearFmt = yy) const;

Specifier Meaning

%a Insert abbreviated weekday name of locale.

%A Insert full weekday name of locale.

%b Insert abbreviated month name of locale.

%B Insert full month name of locale.

%c Insert date and time of locale.

%d Insert day of the month (01-31).

%j Insert day of the year (001-366).

%m Insert month (01-12).

%U Insert week number of the year (00-53) where Sunday

is the first day of the week.

%w Insert weekday (0-6) where Sunday is 0.

%W Insert week number of the year (00-53) where Monday

is the first day of the week.

%x Insert date representation of locale.

%y Insert year without the century (00-99).

%Y Insert year.

General Date Queries
These members are static. They provide general IDate utilities independent of specific IDates.

Typically, you use them to determine calendar information or to convert IDate enumeration data

to string values.

dayName Returns the name of the receiver's day of the week:

¹ The first version of dayName accepts a specified day. It returns the name of the

day of the week that is equivalent to the index value in aDay.

¹ The second version of dayName accepts no parameters. It returns the name of

the receiver's day of the week, such as "Monday".

static IString dayName(DayOfWeek aDay);
IString dayName() const;

 IDate 355

IDate

daysInMonth Returns the number of days in a specified month of a specified year. You must

specify aYear in yyyy format.

static int daysInMonth(Month aMonth, int aYear);

daysInYear Returns the number of days in a specified year. You must specify aYear in yyyy

format.

static int daysInYear(int aYear);

monthName Returns the name of the receiver's month:

¹ The first version of this function accepts no parameters. It returns the name of

the receiver's month, such as "March".

¹ The second version of this function accepts a specified month. It returns the

name of the month that is equivalent to the index value in aMonth.

static IString monthName(Month aMonth);
IString monthName() const;

 Manipulation
Use these members to update an IDate object using addition or subtraction of another IDate

object. Use any of the full complement of addition or subtraction operators and apply the natural

meaning.

operator + Adds an integral number of days to the left-hand operand, yielding a new IDate.

IDate operator +(int numDays) const;

operator += Adds an integral number of days to the left-hand operand, assigning the result to

that operand.

IDate& operator +=(int numDays);

operator - Subtracts an integral number of days from the left-hand operand, yielding a new

IDate. If the right-hand operand is also an IDate, the operator yields the number of

days between the dates.

The parameters are the following:

numDays The function subtracts numDays from the receiver's value and returns an

IDate object.

aDate The function returns the difference in the number of days between the

receiver and aDate. If the receiver is greater than aDate, the difference is

positive.

IDate operator -(int numDays) const;
long operator -(const IDate& aDate) const;

356 VisualAge C++ Open Class Library Reference

IDate

operator -= Subtracts an integral number of days from the right-hand operand, assigning the

result to that operand.

IDate& operator -=(int numDays);

 Month Queries
Use these members to access the month portion of an IDate object.

monthName Returns the name of the receiver's month:

¹ The first version of this function accepts no parameters. It returns the name of

the receiver's month, such as "March".

¹ The second version of this function accepts a specified month. It returns the

name of the month that is equivalent to the index value in aMonth.

IString monthName() const;
static IString monthName(Month aMonth);

monthOfYear Returns the index of the receiver's month of the year: January through December.

Month monthOfYear() const;

 Validation
Use these static members to validate the passed-date data. They test the validity of a given day

and provide a leap year test for a given year.

isLeapYear If the specified year is a leap year, true is returned. Otherwise, false is returned.

You must specify aYear in yyyy format.

static Boolean isLeapYear(int aYear);

isValid Indicates whether the specified date is valid. You must specify aYear in yyyy

format. You can specify the date as:

 ¹ month/day/year

 ¹ day/month/year

 ¹ year/day

For example, February 29, 1990 is not a valid date because February only had 28

days in 1990.

static Boolean isValid(int aDay, Month aMonth, int aYear);
static Boolean isValid(Month aMonth, int aDay, int aYear);
static Boolean isValid(int aYear, int aDay);

 IDate 357

IDate

 Year Queries
Use this member to access the year portion of an IDate object.

year Returns the receiver's year. The returned value is in the yyyy format.

int year() const;

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

 Implementation
These members initializes an IDate object.

initialize Calculates the Julian day number. The form of the parameters are the following:

aMonth mm

aDay dd

aYear yyyy

This function returns a reference to the receiver, initialized to the specified date.

IDate& initialize(Month aMonth, int aDay, int aYear);

Inherited Protected Data

IBase

recoverable unrecoverable

Nested Type Definitions

DayOfWeek typedef enum { Monday = 0 , Tuesday , Wednesday , Thursday ,
Friday , Saturday , Sunday } DayOfWeek;

A typedef that provides the values Monday through Sunday for the days of the week.

358 VisualAge C++ Open Class Library Reference

IDate

Month typedef enum { January = 1 , February , March , April ,
May , June , July , August ,
September , October , November , December } Month;

A typedef that provides the values January through December for the months of the

year.

YearFormat typedef enum { yy , yyyy } YearFormat;

A typedef that specifies the number of digits in the year for the default asString

format (yy or yyyy).

 IDate 359

IDate

360 VisualAge C++ Open Class Library Reference

IDBCSBuffer

IDBCSBuffer

Derivation IBase

 IVBase

 IBuffer

 IDBCSBuffer

Inherited By None.

Header File idbcsbuf.hpp

Members Member Page Member Page

Constructor 367 isValidMBCS 364

allocate 362 lastIndexOf 365

center 362 lastIndexOfAnyBut 365

charLength 368 lastIndexOfAnyOf 366

charType 364 leftJustify 362

className 368 lowerCase 362

includesDBCS 363 maxCharLength 368

includesMBCS 363 next 364

includesSBCS 363 overlayWith 362

indexOf 364 prevCharLength 368

indexOfAnyBut 364 remove 362

indexOfAnyOf 365 reverse 362

insert 362 rightJustify 363

isCharValid 368 startBackwardsSearch 369

isDBCS 364 startSearch 370

isDBCS1 369 strip 363

isMBCS 364 subString 366

isPrevDBCS 369 translate 363

isSBC 369 upperCase 363

isSBCS 364 ˜IDBCSBuffer 368

isValidDBCS 364

Objects of the IDBCSBuffer class implement the version of IString (p. 469) contents

that supports mixed double-byte character set (DBCS) characters. This class also

supports UNIX multiple-byte character set (MBCS) characters. This class ensures

that multiple-byte characters are processed properly.

The use of this class is transparent to the user of class IString.

 Copyright IBM Corp. 1993, 1995 361

IDBCSBuffer

 Public Functions

 Allocation
Use these members to reimplement the allocation members as public.

allocate Returns a new buffer of the specified length.

IBuffer* allocate(unsigned newLen) const;

 Editing
Use these members to reimplement the following IString versions of IBuffer members. The

following members are called by the corresponding IString members to edit the buffer's contents.

center Centers the receiver within a string of the specified length.

IBuffer* center(unsigned newLen, char padCharacter);

insert Inserts the specified string after the specified location.

IBuffer* insert(const char* pInsert, unsigned insertLen,
unsigned pos, char padCharacter);

leftJustify Left-justifies the receiver in a string of the specified length. If the new length

(length) is larger than the current length, the string is extended by the pad character

(padCharacter). The default pad character is a blank.

IBuffer* leftJustify(unsigned newLen, char padCharacter);

lowerCase Translates all upper-case letters in the receiver to lower-case.

IBuffer* lowerCase();

overlayWith Replaces a specified portion of the receiver’s contents with the specified string. If

pos is beyond the end of the receiver’s data, it is padded with the pad character

(padCharacter).

IBuffer* overlayWith(const char* overlay,
unsigned len, unsigned pos, char padCharacter);

remove Deletes the specified portion of the string (that is, the substring) from the receiver.

You can use this function to truncate an IString object at a specific position. For

example: aString.remove(8); removes the substring beginning at index 8 and takes

the rest of the string as a default.

IBuffer* remove(unsigned startPos, unsigned numChars);

reverse Reverses the receiver’s contents.

IBuffer* reverse();

362 VisualAge C++ Open Class Library Reference

IDBCSBuffer

rightJustify Right-justifies the receiver in a string of the specified length. If the receiver’s data

is shorter than the requested length (length), it is padded on the left with the pad

character (padCharacter). The default pad character is a blank.

IBuffer* rightJustify(unsigned newLen, char padCharacter);

strip Strips both leading and trailing character or characters. You can specify the

character or characters as the following:

¹ A char* array

¹ An IStringTest (p. 515) object

The default is white space.

IBuffer* strip(const IStringTest& aTest,
 IStringEnum::StripMode mode);

IBuffer* strip(const char* pChars, unsigned len,
 IStringEnum::StripMode mode);

translate Converts all of the receiver’s characters that are in the first specified string to the

corresponding character in the second specified string.

IBuffer* translate(const char* pInputChars,
unsigned inputLen, const char* pOutputChars,
unsigned outputLen, char padCharacter);

upperCase Translates all lower-case letters in the receiver to upper-case.

IBuffer* upperCase();

 NLS Testing
Use these members to reimplement the following IString versions of IBuffer members. The

corresponding IString members use these members to test the buffer's contents. These tests are

character set specific.

 includesDBCS

If any characters are DBCS (double-byte character set), true is returned.

Boolean includesDBCS() const;

 includesMBCS

If any characters are MBCS (multiple-byte character set), true is returned.

Boolean includesMBCS() const;

 includesSBCS

If any characters are SBCS (single-byte character set), true is returned.

Boolean includesSBCS() const;

 IDBCSBuffer 363

IDBCSBuffer

isDBCS If all the characters are DBCS, true is returned.

Boolean isDBCS() const;

isMBCS If all the characters are MBCS, true is returned.

Boolean isMBCS() const;

isSBCS If all the characters are SBCS, true is returned.

Boolean isSBCS() const;

isValidDBCS If no DBCS characters have a 0 second byte, true is returned.

Boolean isValidDBCS() const;

isValidMBCS If no MBCS characters have a 0 second byte, true is returned.

Boolean isValidMBCS() const;

 Queries
Use these members to reimplement the following IString versions of IBuffer members.

charType Returns the type of a character at the specified index.

IStringEnum::CharType charType(unsigned index) const;

next Returns a pointer to the next character, not the next byte, in the buffer.

const char* next(const char* prev) const;
char* next(const char* prev);

 Searches
Use these members to reimplement the following IString versions of IBuffer search members.

indexOf Returns the byte index of the first occurrence of the specified string within the

receiver. If there are no occurrences, 0 is returned.

unsigned indexOf(const IStringTest& aTest,
unsigned startPos = 1) const;

unsigned indexOf(const char* pString,
unsigned len, unsigned startPos = 1) const;

 indexOfAnyBut

Returns the index of the first character of the receiver that is not in the specified set

of characters. If there are no characters, 0 is returned. Alternatively, this function

returns the index of the first character that fails the test prescribed by a specified

IStringTest (p. 515) object.

364 VisualAge C++ Open Class Library Reference

IDBCSBuffer

unsigned indexOfAnyBut(const IStringTest& aTest,
unsigned startPos = 1) const;

unsigned indexOfAnyBut(const char* pString,
unsigned len, unsigned startPos = 1) const;

 indexOfAnyOf

Returns the index of the first character of the receiver that is a character in the

specified set of characters. If there are no characters, 0 is returned. Alternatively,

this function returns the index of the first character that passes the test prescribed by

a specified IStringTest (p. 515) object.

unsigned indexOfAnyOf(const char* pString,
unsigned len, unsigned startPos = 1) const;

unsigned indexOfAnyOf(const IStringTest& aTest,
unsigned startPos = 1) const;

lastIndexOf Returns the index of the last occurrence of the specified string or character. The

search starts at the position specified by startPos (inclusive) and proceeds backward.

The returned value is in the range 0 <= x <= startPos. The default of 0 starts the

search at the end of the receiver’s string. If the search target is not found, 0 is

returned.

If you specify 0 or 1for startPos, this function returns 0 indicating the search target

was not found.

unsigned lastIndexOf(const char* pString,
unsigned len, unsigned startPos = 0) const;

unsigned lastIndexOf(const IStringTest& aTest,
unsigned startPos = 1) const;

 lastIndexOfAnyBut

Returns the index of the last character not in the specified string or character. The

search starts at the position specified by startPos (inclusive) and proceeds backward.

The default of 0 starts the search at the end of the receiver’s string. If the search

target is not found, 0 is returned.

If you specify 0 for startPos, this function returns 0 indicating the search target was

not found.

unsigned lastIndexOfAnyBut(const char* pString,
unsigned len, unsigned startPos = 0) const;

unsigned lastIndexOfAnyBut(const IStringTest& aTest,
unsigned startPos = 0) const;

 IDBCSBuffer 365

IDBCSBuffer

 lastIndexOfAnyOf

Returns the index of the last character in the specified string or character. The search

starts at the position specified by startPos (inclusive) and proceeds backward. The

default of 0 starts the search at the end of the receiver’s string. If the search target is

not found, 0 is returned.

If you specify 0 or 1 for startPos, this function returns 0 indicating the search target

was not found.

unsigned lastIndexOfAnyOf(const char* pString,
unsigned len, unsigned startPos = 0) const;

unsigned lastIndexOfAnyOf(const IStringTest& aTest,
unsigned startPos = 0) const;

 Subset
Use these members to reimplement the following IString versions of IBuffer subsetting members.

subString Returns a new IBuffer, of the same type as the previous one, containing the

specified subset of characters.

The parameters are the following:

startPos The index at which to start the substring. If startPos is 0, the function

uses position 1. If startPos is beyond the end of the buffer, nothing is

copied. The buffer is filled out by the specified padding character.

len The length to copy from the buffer. If the length extends beyond the end

of the buffer, only the portion up to the end is copied. The buffer is then

padded. If len is 0, a reference to the NULL buffer is returned.

padCharacter

Specifies the character the function uses to pad the copied string if less

than len bytes have been copied from the source buffer.

IBuffer* subString(unsigned startPos,
unsigned len, char padCharacter) const;

Inherited Public Functions

IBuffer

addRef isAlphabetic lastIndexOfAnyOf

asDebugInfo isAlphanumeric leftJustify

center isASCII length

change isControl lowerCase

366 VisualAge C++ Open Class Library Reference

IDBCSBuffer

IBuffer

charType isDBCS newBuffer

checkAddition isDigits next

checkMultiplication isGraphics null

compare isHexDigits overflow

contents isLowerCase overlayWith

copy isMBCS remove

defaultBuffer isPrintable removeRef

fromContents isPunctuation reverse

includesDBCS isSBCS rightJustify

includesMBCS isUpperCase setDefaultBuffer

includesSBCS isValidDBCS strip

indexOf isValidMBCS subString

indexOfAnyBut isWhiteSpace translate

indexOfAnyOf lastIndexOf upperCase

insert lastIndexOfAnyBut useCount

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

Constructor and Destructor
The constructor for this class is protected. Only IDBCSBuffer::allocate (p. 362) and

IBuffer::initialize (p. 344) can call the constructor.

Constructor IDBCSBuffer(unsigned bufLength);

Constructs a buffer of the specified length. The allocated "data" member array

actually is 1 byte greater than the argument value (this is achieved automatically via

use of the overloaded operator new for class IBuffer). The terminating (extra) byte is

set to null.

 IDBCSBuffer 367

IDBCSBuffer

This constructor is protected. IDBCSBufferss must be obtained by using

IDBCSBuffer::nullBuffer and subsequent newBuffer calls to existing IDBCSBuffer

objects.

Destructor ˜IDBCSBuffer();

 Protected Queries
These members help implement this class.

charLength Returns the number of bytes in the character whose first byte is pointed to by

char *. This is a static function.

static size_t charLength(char const*);
size_t charLength(unsigned pos) const;

className Returns the name of the class (IDBCSBuffer).

const char* className() const;

 maxCharLength

Returns the maximum number of bytes in a multiple-byte character. This is a static

function.

static size_t maxCharLength();

 prevCharLength

Returns the number of bytes in the preceding character to the one at the specified

offset.

size_t prevCharLength(unsigned pos) const;

 Protected Testing
These members help implement this class.

isCharValid If the character at the specified index is in the set of valid characters, true is

returned.

The parameters are the following:

pos The position in the receiver’s buffer for the validity check.

Warning: It is important that this position not be the second byte of a

DBCS character. If it is, you might get false results.

pValidChars

The string of the valid characters. It can contain a mixture of DBCS and

SBCS characters.

368 VisualAge C++ Open Class Library Reference

IDBCSBuffer

numValidChars

The size of this string of valid characters.

Boolean isCharValid(unsigned pos,
const char* pValidChars, unsigned numValidChars) const;

isDBCS1 If the byte at the specified offset is the first byte of DBCS, true is returned.

Note: The lxbrary provides this function only for compatibility with prior library

versions. We recommend using IDBCSBuffer::charLength (p. 368) to

determine if the byte is part of a multiple-byte character.

Boolean isDBCS1(unsigned pos) const; Supported On:

PM

isPrevDBCS If the preceding character to the one at the specified offset is a DBCS character,

true is returned.

Note: The library provides this function only for compatibility with prior library

versions. We recommend using IDBCSBuffer::prevCharLength (p. 368) to

determine if the preceding byte is part of a multiple-byte character.

Boolean isPrevDBCS(unsigned pos) const; Supported On:

PM

isSBC If the byte pointed to by the specified character is a single-byte character, true is

returned. This is a static function.

static Boolean isSBC(char const*);

 Search Initialization
These members help implement this class. They initialize search data.

 startBackwardsSearch

Initializes a search of type IString::lastIndexOf (p. 489).

¹ If searchLen is greater than the length of the buffer, 0 is returned indicating an

invalid search request.

¹ If the starting position is 0 or beyond the last searchLen bytes of the buffer, the

position where the last searchLen bytes start in the buffer is returned.

¹ If the starting position is 1 through the last searchLen bytes, the value of

startingPos is returned.

unsigned startBackwardsSearch(unsigned startPos,
unsigned searchLen) const;

 IDBCSBuffer 369

IDBCSBuffer

startSearch Initializes a search of type IString::indexOf (p. 481).

¹ If startPos is 0, the search uses a starting position of 1.

¹ If the specified startPos and searchLen result in an invalid search, 0 is returned.

This usually occurs when the sum of startPos and searchLen is greater than the

size of the buffer.

unsigned startSearch(unsigned startPos, unsigned searchLen) const;

Inherited Protected Functions

IBuffer

allocate initialize operator new

className operator delete startBackwardsSearch

Inherited Public Data

IBuffer

dbcsTable

Inherited Protected Data

IBase

recoverable unrecoverable

370 VisualAge C++ Open Class Library Reference

IDeviceError

IDeviceError

Derivation IException

 IDeviceError

Inherited By None.

Header File iexcbase.hpp

Members Member Page

Constructor 371

name 372

Objects of the IDeviceError class represent an exception. When a member function

makes a hardware-related request of the operating system or the presentation system

that the system cannot satisfy because of a hardware failure, the member function

creates and throws an object of the IDeviceError class. An example of a failing

hardware-related request is printing to a disconnected printer.

 Public Functions

 Constructor
You can construct objects of this class.

Constructor You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is unrecoverable.

¹ Using the macros discussed in IException (p. 379). The library provides these

macros to make creating exceptions easier for you.

IDeviceError(const char* errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

 Copyright IBM Corp. 1993, 1995 371

IDeviceError

 Exception Type
These members provide support for determining the name (type) of the exception. This is used

for logging out an exception object's error information.

name Returns the name of the object’s class.

virtual const char* name() const;

Inherited Public Functions

IException

addLocation locationAtIndex setSeverity

appendText locationCount setText

assertParameter logExceptionData setTraceFunction

errorCodeGroup name terminate

errorId setErrorCodeGroup text

isRecoverable setErrorId textCount

Inherited Public Data

IException

baseLibrary CLibrary operatingSystem

372 VisualAge C++ Open Class Library Reference

IErrorInfo

IErrorInfo

Derivation IBase

 IVBase

 IErrorInfo

Inherited By ICLibErrorInfo ISystemErrorInfo

IGUIErrorInfo IXLibErrorInfo

IMMErrorInfo

Header File iexcept.hpp

Members Member Page Member Page

Constructor 375 text 376

errorId 375 throwError 376

isAvailable 376 ˜IErrorInfo 375

operator const char * 376

The IErrorInfo class is an abstract base class that defines the interface for its derived

classes. These classes retrieve error information and text that you can subsequently

use to create an exception object. The following macros assist in throwing

exceptions:

IASSERTPARM

This macro accepts an expression to test. The expression is asserted to be true.

If it evaluates to false, the macro generates code that calls the

IExcept__assertParameter function, which creates an IInvalidParameter (p. 395)

exception. The error group, other, is added to the object. The exception data is

logged using IException::TraceFn::logExceptionData, and the exception is then

thrown.

IASSERTSTATE

This macro accepts an expression to test. The expression is asserted to be true.

If it evaluates to false, the macro generates code that calls the

IExcept__assertState function, which creates an IInvalidRequest (p. 397)

exception. The error group, other, is added to the object. The exception data is

logged, and the exception is then thrown.

ITHROWLIBRARYERROR

This macro can throw any of the library-defined exceptions.

id The ID of the message to load from the class library message file.

 Copyright IBM Corp. 1993, 1995 373

IErrorInfo

name A value from the enumeration IErrorInfo::ExceptionType (p. 377),

indicating the type of exception to create.

severity A value from the enumeration IException::Severity (p. 386),

indicating the severity of the exception.

The macro generates code that calls the IExcept__throwLibraryError function,

which does the following:

1. Loads the message text from the class library message file

2. Uses the message text to create an exception object

3. Adds location information

4. Logs the exception data

5. Throws the exception

ITHROWLIBRARYERROR1

This macro can throw any of the library-defined exceptions. It is identical to

the ITHROWLIBRARYERROR macro, except it has a fourth parameter:

text Replacement text for the retrieved message.

ITHROWERROR

This macro can throw any of the library-defined exceptions.

messageId The ID of the message to load from the message file.

name A value from the enumeration IErrorInfo::ExceptionType (p. 377),

indicating the type of exception to create.

severity A value from the enumeration IException::Severity (p. 386),

indicating the severity of the exception.

messageFile

The name of the message file to load the exception text from. This

name should include the file extension. e.g. "USERMSG.MSG"

errorGroup

The errorGroup associated with this error. This can be one of the

values for ErrorCodeGroup defined in IException, or a value you

provide.

The macro generates code that calls the IExcept__throwError function, which

does the following:

1. Loads the message text from the specified library message file

2. Uses the message text to create an exception object

3. Adds the error group to the object

374 VisualAge C++ Open Class Library Reference

IErrorInfo

4. Adds location information

5. Logs the exception data

6. Throws the exception

ITHROWERROR1

This macro can throw any of the library-defined exceptions. It is identical to

the ITHROWERROR macro, except it has a fourth parameter:

substitutionText

Substitution text for the retrieved message.

PM IGUIErrorInfo (p. 391), ISystemErrorInfo (p. 523), and ICLibErrorInfo (p. 347) are

derived from this class. You can use IGUIErrorInfo to obtain information about

errors detected by the Win calls for Presentation Manager. Use ISystemErrorInfo to

obtain error information about DOS system call errors.

Motif IXLibErrorInfo (p. 543) is derived from this class. You can use IXLibErrorInfo to

obtain error information about error conditions detected when calling X library APIs.

Use ICLibErrorInfo to obtain error information about error conditions detected when

calling C Library functions.

You can create objects of IGUIErrorInfo (p. 391) and ISystemErrorInfo (p. 523) on

AIX, but they have default messages:

IGUIErrorInfo GUI exception condition detected

ISystemErrorInfo System exception condition detected

 Public Functions

Constructor and Destructor
This is a virtual base class so you cannot create objects of this type without deriving from this

class.

Constructor IErrorInfo();

Destructor virtual ˜IErrorInfo();

 Error Information
Use these members to return error information provided by objects of this class. All the

members are pure virtual.

errorId Returns the error ID.

virtual unsigned long errorId() const = 0;

 IErrorInfo 375

IErrorInfo

isAvailable If error information is available, true is returned.

virtual Boolean isAvailable() const = 0;

operator

const char *

Returns the error text.

virtual operator const char *() const = 0;

text Returns the error text.

virtual const char* text() const = 0;

 Throw Support
Use these members to support the throwing of exceptions.

throwError Creates an IErrorInfo object and uses it to do the following:

1. Create an exception object

2. Add the error code group to the object

3. Add the location information to the object

4. Log the exception data

5. Throw the exception

location An IExceptionLocation (p. 389) object containing the following:

 ¹ Function name

 ¹ File name

¹ Line number where the function is called

name Use the enumeration ExceptionType (p. 377) to specify the type of the

exception. The default is accessError.

severity Use the enumeration IException::Severity (p. 386) to specify the severity

of the error. The default is recoverable.

errorGroup

Use one of the ErrorCodeGroup values provided in IException, or provide

your own group for this parameter. The default is baseLibrary.

void throwError(const IExceptionLocation& location,
ExceptionType name = accessError,
IException::Severity severity = recoverable,
IException::ErrorCodeGroup errorGroup = IException::baseLibrary);

Inherited Public Functions

IVBase

asDebugInfo asString

376 VisualAge C++ Open Class Library Reference

IErrorInfo

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

 ExceptionType
ExceptionType {
 accessError, deviceError, invalidParameter,

invalidRequest, outOfSystemResource, outOfWindowResource,
 outOfMemory, resourceExhausted
 };

The following enumeration type is defined to specify the type of exception to create

on various functions and macros:

ExceptionType - Used to specify the type of exception to be created. The

allowable values are:

accessError

Creates an IAccessError object.

deviceError

Creates an IDeviceError object.

invalidParameter

Creates an IInvalidParameter object.

invalidRequest

Creates an IInvalidRequest object.

outOfSystemResource

Creates an IOutOfSystemResource object.

outOfWindowResource

Creates an IOutOfWindowResource object.

outOfMemory

Creates an IOutOfMemory object.

resourceExhausted

Creates an IResourceExhausted object.

 IErrorInfo 377

IErrorInfo

378 VisualAge C++ Open Class Library Reference

IException

IException

Derivation Inherits from none.

Inherited By IAccessError IInvalidParameter

IAssertionFailure IInvalidRequest

IDeviceError IResourceExhausted

Header File iexcbase.hpp

Members Member Page Member Page

Constructor 382 operatingSystem 386

addLocation 383 other 386

appendText 384 presentationSystem 386

assertParameter 385 setErrorCodeGroup 382

baseLibrary 386 setErrorId 383

CLibrary 386 setSeverity 384

errorCodeGroup 382 setText 384

errorId 383 setTraceFunction 384

isRecoverable 384 terminate 381

locationAtIndex 383 text 385

locationCount 383 textCount 385

logExceptionData 384 ˜IException 382

name 385

The IException class is the base class from which all exception objects thrown in the

library are derived. None of the functions in this class throws exceptions because an

exception has probably already been thrown or is about to be thrown. Member

functions in the library create objects of classes derived from IException for all error

conditions the functions encounter. Each exception object contains the following:

¹ A stack of exception message text strings (descriptions)

¹ An error ID

¹ A severity code

¹ An error code group

¹ Information about where the exception was thrown

IException provides all of the functions required for it and its derived classes,

including functions that operate on the text strings in the stack.

 Copyright IBM Corp. 1993, 1995 379

IException

The library defines the derived classes so that you can catch exceptions by their type.

In general, never create an IException object. Instead, create and throw an object of

the appropriate derived class. The derived classes of IException are the following:

IAccessError (p. 319)

IAssertionFailure (p. 321)

IDeviceError (p. 371)

IInvalidParameter (p. 395)

IInvalidRequest (p. 397)

IResourceExhausted (p. 459)

In addition, IResourceExhausted has the following derived classes:

IOutOfMemory (p. 419)

IOutOfSystemResource (p. 421)

IOutOfWindowResource (p. 423)

You can also derive your own exception type from IException.

The library provides the following macros to assist in using exception handling. If

you derive your own exception type and you want to use a macro, you must use the

ITHROW macro or write your own macro.

ITHROW

Accepts as input a predefined object of any IException-derived class. The

macro generates code to add the location information to the objects, logs all

object data, and throws the exception.

IRETHROW

Accepts as input an object of any derived class of IException that has been

previously thrown and caught. Like the ITHROW macro, it also captures the

location information and logs all object data before re-throwing the exception.

IASSERT

If you define IC_DEVELOP during the compile for debugging purposes, this

macro expands to provide assertion support in the library. This macro accepts

an expression to test. If the test evaluation returns false, IASSERT calls

assertParameter (p. 385).

IEXCLASSDECLARE

Creates a declaration for a derived class of IException or one of its derived

classes.

IEXCLASSIMPLEMENT

Creates a definition for a derived class of IException or one of its derived

classes.

IEXCEPTION_LOCATION

Expands to create an object of the class IExceptionLocation (p. 389).

380 VisualAge C++ Open Class Library Reference

IException

INO_EXCEPTIONS_SUPPORT

Supports compilers lacking an exception-handling implementation. If you use

the INO_EXCEPTIONS_SUPPORT macro, the following macros end the

program after capturing the location information and logging it. These macros

normally throw an exception.

ITHROW Found in IException.

IASSERTPARM Found in IErrorInfo (p. 373).

IASSERTSTATE Found in IErrorInfo.

ITHROWERROR Found in IErrorInfo.

ITHROWERROR1 Found in IErrorInfo.

ITHROWLIBRARYERROR Found in IErrorInfo.

ITHROWLIBRARYERROR1 Found in IErrorInfo.

ITHROWGUIERROR Found in IGUIErrorInfo (p. 391).

ITHROWGUIERROR2 Found in IGUIErrorInfo.

ITHROWSYSTEMERROR Found in ISystemErrorInfo (p. 523).

Warning: The INO_EXCEPTIONS_SUPPORT macro might not work

correctly on all compilers.

Whenever the library throws one of these exceptions, trace records are output with

information about the exception. The class ITrace (p. 533) describes tracing in more

detail.

 Public Functions

 Application Termination
These members provide support for terminating an application instead of throwing an exception.

terminate Ends the application. Normally, the library only intends this function to be used

internally by the library’s exception handling macros when the compiler you are using

does not support C++ exception handling. This only occurs if you define the

INO_EXCEPTIONS_SUPPORT macro. The macros that use this function are:

ITHROW Found in IException.

IASSERTPARM Found in IErrorInfo (p. 373).

IASSERTSTATE Found in IErrorInfo.

ITHROWLIBRARYERROR Found in IErrorInfo.

ITHROWLIBRARYERROR1 Found in IErrorInfo

ITHROWGUIERROR Found in IGUIErrorInfo (p. 391).

ITHROWGUIERROR2 Found in IGUIErrorInfo.

ITHROWSYSTEMERROR Found in ISystemErrorInfo (p. 523).

virtual void terminate();

 IException 381

IException

Constructors and Destructor
You can construct and destruct objects of this class. You cannot assign one IException object

from another.

 Constructors

1 IException(const char* errorText,
unsigned long errorId = 0,
Severity severity = IException::unrecoverable);

You can construct objects of this class by doing the following:

¹ Using the primary constructor. Normally, this is the only way you can construct

an object of this class.

errorText The text describing this error.

errorId (Optional) The identifier you want to associate with this particular

error.

severity (Optional) Use the enumeration IException::Severity (p. 386) to

specify the severity of the error. The default is unrecoverable.

¹ Using the copy constructor. The library provides this constructor so the compiler

can copy the exception when it is thrown.

exception The exception object you want to copy.

2 IException(const IException& exception);

The copy constructor is provided so that the compiler can make copies of the object

during the throwing of an exception.

Destructor virtual ˜IException();

 Error Code
Use these members to determine which class library an exception originated from.

 errorCodeGroup

Returns the error group the exception originated from.

ErrorCodeGroup errorCodeGroup() const;

 setErrorCodeGroup

Sets the id of the originating class library into the exception object.

IException& setErrorCodeGroup(ErrorCodeGroup errorGroup);

382 VisualAge C++ Open Class Library Reference

IException

 Error Information
Use these members to get or modify the error identifier of the exception object.

errorId Returns the error ID of the exception.

unsigned long errorId() const;

setErrorId Sets the error ID to the specified value.

errorId The identifier you want to associate with this error.

IException& setErrorId(unsigned long errorId);

 Exception Location
Use these members to set and access the location information in the exception object.

addLocation Adds the location information to the exception object. The library captures this

information when an exception is thrown or re-thrown. An array of

IExceptionLocation objects is stored in the exception object.

location An IExceptionLocation (p. 389) object containing the following:

 ¹ Function name

 ¹ File name

¹ Line number where the function is called

virtual IException&
addLocation(const IExceptionLocation& location);

 locationAtIndex

Returns the IExceptionLocation (p. 389) object at the specified index.

locationIndex

If the index is not valid, a 0 pointer is returned.

const IExceptionLocation*
locationAtIndex(unsigned long locationIndex) const;

 locationCount

Returns the number of locations stored in the exception location array.

unsigned long locationCount() const;

 Exception Logging
Use these members to log exception information.

 IException 383

IException

 logExceptionData

Logs the exception data stored in the IException object using the function specified

by IException::setTraceFunction (p. 384). If you have not set a tracing function, the

exception information is written to standard error output.

virtual IException& logExceptionData();

 setTraceFunction

Registers an object of IException::TraceFn (p. 387) to be used to log exception data.

The ITrace (p. 533) member functions and macros write the trace messages.

IException::logExceptionData (p. 384) calls IException::TraceFn::write (p. 388)

during exception processing to write the data. If you do not register an object, data is

written to standard error output.

traceFunction

Your own trace function implementation.

static void
setTraceFunction(IException::TraceFn& traceFunction);

 Exception Severity
Use these members to set and determine the severity of the error condition.

 isRecoverable

If the thrower (that is, whatever creates the exception) determines the exception is

recoverable, 1 is returned. If the thrower determines it is unrecoverable, 0 is

returned.

virtual int isRecoverable() const;

setSeverity Sets the severity of the exception.

severity Use the enumeration Severity (p. 386) to specify the severity of the

exception.

IException& setSeverity(Severity severity);

 Exception Text
Use these members to set, modify, and retrieve the exception text in the object.

appendText Appends the specified text to the text string on the top of the exception text stack.

errorText The text you want to append.

IException& appendText(const char* errorText);

setText Adds the specified text to the top of the exception text stack.

384 VisualAge C++ Open Class Library Reference

IException

errorText The error text you want to add.

IException& setText(const char* errorText);

text Returns a constant char* pointing to an exception text string from the exception text

stack.

indexFromTop

The default index is 0, which is the top of the stack. If you specify an

index which is not valid, a 0 pointer is returned.

const char* text(unsigned long indexFromTop = 0) const;

textCount Returns the number of text strings in the exception text stack.

unsigned long textCount() const;

 Exception Type
Use these members to determine the name (type) of the exception. This is used for logging out

an exception object's error information.

name Returns the name of the object’s class.

virtual const char* name() const;

 Throw Support
These members support the throwing of exceptions.

 assertParameter

The IASSERT macro uses this function to do the following:

1. Create an IAssertionFailure (p. 321) exception

2. Add the location information to it

3. Log the exception data

4. Throw the exception

exceptionText

The text describing the exception.

location An IExceptionLocation (p. 389) object containing the following:

 ¹ Function name

 ¹ File name

¹ Line number where the function is called

static void assertParameter(const char* exceptionText,
 IExceptionLocation location);

 IException 385

IException

 Public Data

 Error Code
Use these members to determine which class library an exception originated from.

baseLibrary This is the error group for IBM Open Class Library errors.

static ErrorCodeGroup const baseLibrary;

CLibrary This is the error group for the C library errors.

static ErrorCodeGroup const CLibrary;

 operatingSystem

This is the error group for operating system errors.

static ErrorCodeGroup const operatingSystem;

other This is the error group for errors which don't fall in any of the other groups.

static ErrorCodeGroup const other;

 presentationSystem

This is the error group for presentation system errors.

static ErrorCodeGroup const presentationSystem;

 Nested Classes

IException contains the following nested classes:

IException::TraceFn (see page 387)

Nested Type Definitions

Severity Severity { unrecoverable, recoverable };

Use these enumerators to specify the severity of the exception:

unrecoverable

Classifies the exception as unrecoverable.

recoverable

Classifies the exception as recoverable.

 ErrorCodeGroup
typedef const char * ErrorCodeGroup;

This identifies the source of the exception's error code.

386 VisualAge C++ Open Class Library Reference

IException::TraceFn

IException::TraceFn

Derivation Inherits from none.

Inherited By None.

Header File iexcbase.hpp

Members Member Page Member Page

Constructor 388 TraceFn 388

exceptionLogged 388 write 388

logData 388

Objects of the class IException (p. 379) and its derived classes use

IException::TraceFn to log exception object data.

A default TraceFn derived object is registered by the Collection Class Library. If the

User Interface Library is used, it registers a TraceFn derived object which overrides

the write function. It uses ITrace to write out the buffers of data, so the buffers will

be written to wherever the ICLUI TRACETO environment variable directs the output

from ITrace (p. 533).

If you want to provide your own tracing function, derive your own class from

IException::TraceFn and register it with IException using

IException::setTraceFunction (p. 384). You can completely take over exception

logging by overriding the logData function. You are passed the IException object so

you can completely customize the logging of exception data. If you only wish to

change how the buffers of exception data are logged you should override the write

function.

The exceptionLogged function is provided so that you can determine when the last

buffer of exception data has been passed to the write function by the default logData

function. This allows you to gather all of the exception data by only overriding the

write and exceptionLogged functions for situations where you must write all of the

exception data out with one call.

 Copyright IBM Corp. 1993, 1995 387

IException::TraceFn

 Public Functions

 Tracing
The IException's logExceptionData member uses these members to log instance data of exception

objects.

logData Logs error information contained in an Exception object.

virtual void logData(IException& exception);

write Writes a buffer of exception data.

virtual void write(const char* buffer);

 Protected Functions

 Constructors
The only way to create objects of this class is from a derived class. To enforce this, the only

constructors we provide for this class are protected.

Derived classes use these members to create objects of this class.

Constructors This default constructor can be used by derived classes to create objects of this

class.

TraceFn();

 Tracing
The function IException::logExceptionData uses these members to log instance data of

exception objects.

 exceptionLogged

This function is called by the default logData function after the last buffer of

exception data has been passed to the write function.

virtual void exceptionLogged();

388 VisualAge C++ Open Class Library Reference

IExceptionLocation

IExceptionLocation

Derivation Inherits from none.

Inherited By None.

Header File iexcbase.hpp

Members Member Page Member Page

Constructor 390 functionName 389

fileName 389 lineNumber 389

Objects of the IExceptionLocation class save the location information when an

exception is thrown or re-thrown. None of the functions in this class throws

exceptions because an exception probably has been thrown already or is about to be

thrown.

Typically, either the ITHROW or IRETHROW macro creates an IExceptionLocation

object when an exception is to be thrown or re-thrown, respectively. However, you

can create your own IExceptionLocation object by constructing it yourself or by using

the IEXCEPTION_LOCATION macro.

 Public Functions

 Attributes
Use these members to return the attributes of the exception location object.

fileName Returns the path-qualified source file name where an exception has been thrown or

re-thrown.

const char* fileName() const;

 functionName

Returns the name of the function that has thrown or re-thrown an exception.

const char* functionName() const;

lineNumber Returns the line number of the statement in the source file from which an exception

has been thrown or re-thrown.

unsigned long lineNumber() const;

 Copyright IBM Corp. 1993, 1995 389

IExceptionLocation

 Constructor
Constructor You can create objects of this class by doing the following:

¹ Using the constructor.

fileName The source file containing the function that created this object.

functionName

The name of the function creating this object.

lineNumber

The line number of the statement from the source file from which the

object was created.

¹ Using the macro IEXCEPTION_LOCATION (p. 379). This macro captures the

current location information using constants provided by the compiler for all of

the parameters. Default values are provided for all the parameters to support

environments in which all constants or alternative means for getting location

information are not provided.

IExceptionLocation(const char* fileName = 0,
const char* functionName = 0,
unsigned long lineNumber = 0);

390 VisualAge C++ Open Class Library Reference

IGUIErrorInfo

IGUIErrorInfo

Derivation IBase

 IVBase

 IErrorInfo

 IGUIErrorInfo

Inherited By None.

Header File iexcept.hpp

Members Member Page Member Page

Constructor 392 text 393

errorId 393 throwGUIError 393

isAvailable 393 ˜IGUIErrorInfo 393

operator const char * 393

Objects of the IGUIErrorInfo class represent error information that you can include in

an exception object. When an OS/2 Win call results in an error condition, objects of

the IGUIErrorInfo class are created. You can use the error text to construct a derived

class object of IException (p. 379).

The library provides the following macros for throwing exceptions constructed with

IGUIErrorInfo information:

ITHROWGUIERROR

This macro accepts as its only parameter the name of the GUI function that

returned an error condition. This macro then generates code that calls

IGUIError::throwGUIError (p. 393), which does the following:

1. Creates an IGUIErrorInfo object

2. Uses the object to create an object of IAccessError (p. 319)

3. Adds the presentationSystem error group to the object

4. Adds location information

5. Logs the exception data

6. Throws the exception

Note: This macro uses the recoverable enumerator provided by

IException::Severity (p. 386).

 Copyright IBM Corp. 1993, 1995 391

IGUIErrorInfo

ITHROWGUIERROR2

This macro can throw any of the User Interface Class Library-defined

exceptions. This macro accepts the following parameters:

location The name of the GUI function returning an error code, the name of

the file the function is in, and the function’s line number.

name Use the enumeration IErrorInfo::ExceptionType (p. 377) to specify

the type of the exception. The default is accessError.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is recoverable.

This macro generates code that calls throwGUIError (p. 393), which does the

following:

1. Creates an IGUIErrorInfo object

2. Uses the object to create an IException object

3. Adds the presentationSystem error group to the object

4. Adds location information

5. Logs the exception data

6. Throws the exception

PM You can use objects of the IGUIErrorInfo class to obtain information about the last

error that occurred on a call to Presentation Manager.

Motif You can create objects of this class on AIX, but the objects contain no useful

information and only have the default message: "GUI exception condition detected."

You can use this class in OS/2 to create error information for GUI errors resulting

from Win calls. Objects of this class obtain the error information by calling

WinGetLastError, which is the Presentation Manager API that maintains the error

information per thread. Motif does not have a similar mechanism where you can

query the X server for error information. If you use objects of this class in AIX, they

obtain a default message, which is "GUI exception condition detected."

 Public Functions

Constructor and Destructor
You can construct and destruct objects of this class. You cannot copy or assign objects of this

class.

Constructor IGUIErrorInfo(const char* GUIFunctionName = 0);

You can only construct objects of this class using the default constructor.

392 VisualAge C++ Open Class Library Reference

IGUIErrorInfo

Note: If the constructor cannot load the error text, the library provides the following

default text: "No error text is available."

GUIFunctionName

The name of the failing GUI function. If you specify GUIFunctionName,

the constructor prefixes it to the error text. Optional.

Destructor virtual ˜IGUIErrorInfo();

 Error Information
Use these members to return error information provided by objects of this class.

errorId Returns the error ID.

virtual unsigned long errorId() const;

PM In the case of a Presentation Manager error, the IGUIErrorInfo constructor obtains the

errorId using WinGetLastError.

isAvailable If the error information is available, true is returned.

virtual Boolean isAvailable() const;

operator

const char *

Returns the error text.

virtual operator const char *() const;

text Returns the error text.

virtual const char* text() const;

 Throw Support
Use these members to support the throwing of exceptions using information from an

IGUIErrorInfo object. The throwGUIError function is used by the ITHROWGUIERROR macro.

 throwGUIError

Creates an IGUIErrorInfo object and uses the text from it to do the following:

1. Create an exception object

2. Add the location information to it

3. Log the exception data

4. Throw the exception.

functionName

The name of the function where the exception occurred.

 IGUIErrorInfo 393

IGUIErrorInfo

location An IExceptionLocation (p. 389) object containing the following:

 ¹ Function name

 ¹ File name

¹ Line number where the function is called

name Use the enumeration IErrorInfo::ExceptionType (p. 377) to specify the

type of the exception. The default is accessError.

severity Use the enumeration IException::Severity (p. 386) to specify the severity

of the error. The default is recoverable.

static void throwGUIError(const char* functionName,
const IExceptionLocation& location,
IErrorInfo::ExceptionType name = accessError,
IException::Severity severity = recoverable);

Inherited Public Functions

IErrorInfo

errorId isAvailable operator const char *

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

394 VisualAge C++ Open Class Library Reference

IInvalidParameter

IInvalidParameter

Derivation IException

 IInvalidParameter

Inherited By None.

Header File iexcbase.hpp

Members Member Page

Constructor 395

name 396

Objects of the IInvalidParameter class represent an exception. When a member

function detects an invalid input parameter, the member function creates and throws

an object of the IInvalidParameter class. This exception is identical to the exception

IAssertionFailure (p. 321), with one difference: IInvalidParameter is thrown whether

or not you define IC_DEVELOP for the compile.

 Public Functions

 Constructor
You can construct objects of this class.

Constructor You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is unrecoverable.

¹ Using the macros discussed in IException (p. 379). The library provides these

macros to make creating exceptions easier for you.

IInvalidParameter(const char* errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

 Copyright IBM Corp. 1993, 1995 395

IInvalidParameter

 Exception Type
Use these members to determine the name (type) of the exception. This is used for logging out

an exception object's error information.

name Returns the name of the object’s class.

virtual const char* name() const;

Inherited Public Functions

IException

addLocation locationAtIndex setSeverity

appendText locationCount setText

assertParameter logExceptionData setTraceFunction

errorCodeGroup name terminate

errorId setErrorCodeGroup text

isRecoverable setErrorId textCount

Inherited Public Data

IException

baseLibrary CLibrary operatingSystem

396 VisualAge C++ Open Class Library Reference

IInvalidRequest

IInvalidRequest

Derivation IException

 IInvalidRequest

Inherited By None.

Header File iexcbase.hpp

Members Member Page

Constructor 397

name 398

Objects of the IInvalidRequest class represent an exception. Whenever an object

cannot satisfy a request, the member function creates and throws an object of the

IInvalidRequest class. An example of such a request occurs if you try to paste text

from the system clipboard, but the clipboard has no data.

 Public Functions

 Constructor
You can construct objects of this class.

 IInvalidRequest

You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is unrecoverable.

¹ Using the macros discussed in IException (p. 379). The library provides these

macros to make creating exceptions easier for you.

IInvalidRequest(const char* errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

 Copyright IBM Corp. 1993, 1995 397

IInvalidRequest

 Exception Type
Use these members to determine the name (type) of the exception. This is used for logging out

an exception object's error information.

name Returns the name of the object’s class.

virtual const char* name() const;

Inherited Public Functions

IException

addLocation locationAtIndex setSeverity

appendText locationCount setText

assertParameter logExceptionData setTraceFunction

errorCodeGroup name terminate

errorId setErrorCodeGroup text

isRecoverable setErrorId textCount

Inherited Public Data

IException

baseLibrary CLibrary operatingSystem

398 VisualAge C++ Open Class Library Reference

IMessageText

IMessageText

Derivation Inherits from none.

Inherited By None.

Header File imsgtext.hpp

Members Member Page Member Page

Constructor 400 setDefaultText 401

operator = 401 text 401

operator const char * 401 ˜IMessageText 401

Objects of the IMessageText class load message text from a message file. When the

library detects an error condition and prepares to throw an exception, the library

creates an object of this class if it is using customized message text. You can use the

message text provided by this class to construct an object of a class derived from

IException (p. 379).

PM The IMessageText object searches for the message file as follows:

¹ The system root directory

¹ The current working directory

¹ The DPATH environment setting

¹ The APPEND environment setting

Typically, message files have the extension .MSG.

Motif The IMessageText object searches for the message file using the NLSPATH

environment setting.

 Copyright IBM Corp. 1993, 1995 399

IMessageText

 Public Functions

Constructors and Destructor
You can construct, destruct, copy, and assign objects of this class.

 Constructor

1 IMessageText(unsigned long messageId,
const char* messageFileName, const char* textInsert1 = 0,
const char* textInsert2 = 0, const char* textInsert3 = 0,
const char* textInsert4 = 0, const char* textInsert5 = 0,
const char* textInsert6 = 0, const char* textInsert7 = 0,
const char* textInsert8 = 0, const char* textInsert9 = 0);

You can construct objects of this class using this constructor, allowing you to retrieve

a message from a file and, optionally, insert additional text strings within the

retrieved message.

You can specify that the object insert the text strings through substitution symbols

within the message. For example:

The application cannot find the file, %1, at the specified path, %2.

Using this constructor, you can replace the substitution symbols by supplying the file

name and path name via textInsert1 and textInsert2 respectively. Notice the

substitution symbol number (%1) matches the parameter number (textInsert1).

Warning: You must use the numbers in sequence. For example, you cannot use

%1, %2, and %5 in a message, skipping %3 and %4. Instead, you must use %1, %2,

and %3. You must specify the substitution symbols sequentially and the text

insertion parameters' numbers must match their respective substitution symbol.

messageId The message ID.

messageFileName

The name of the message file to retrieve the message from. The

message file name must include the file extension.

If you specify 0, the message text is in a message segment bound

to the .EXE. The IMessageText object loads the message from the

application. Otherwise, the library searches for the message text in

the specified message file.

Note: If the library cannot load the text from the message file, this

constructor uses the following default text: "Unable to load

text from message file."

400 VisualAge C++ Open Class Library Reference

IMessageText

textInsert1 through textInsert9

(Optional) A text string you insert into the message.

2 IMessageText(const IMessageText& text);

You can construct objects of this class using the library provided copy constructor.

text The error message text.

operator = Sets the object data to the values of the specified IMessageText object.

text The message text object you want to copy.

IMessageText& operator =(const IMessageText& text);

Destructor ˜IMessageText();

 Text Operations
Use these members to obtain the text from the object and to set the default text for the object.

operator

const char *

Returns the message text.

operator const char *() const;

 setDefaultText

Sets the default message text to the specified text string. The text is set only if the

constructor cannot load the text for the specified message ID.

Note: The default text is: "Unable to load text from message file."

text The new default text string.

IMessageText& setDefaultText(const char* text);

text Returns the message text.

const char* text() const;

 IMessageText 401

IMessageText

402 VisualAge C++ Open Class Library Reference

INotificationEvent

INotificationEvent

Derivation IBase

 INotificationEvent

Inherited By None.

Header File inotifev.hpp

Members Member Page Member Page

Constructor 403 operator = 404

eventData 404 setEventData 404

hasNotifierAttrChanged 404 setNotifierAttrChanged 405

notificationId 404 setObserverData 405

notifier 404 ˜INotificationEvent 404

observerData 404

The class INotificationEvent provides the details of a notification event to an observer

object. INotifier objects create notification events when these objects change or when

they must notify observer objects of events. All IBM User Interface Class Library

classes may inherit from the INotifier class to obtain the ability to notify. Currently,

the IBM User Interface Class Library has implemented the IWindow (Vol. II) class as

inheriting from INotifier. Therefore, all classes derived from IWindow (Vol. II)

inherit this ability.

 Public Functions

Constructors and Destructor
You can construct, destruct, and assign objects of this class.

 Constructors

1 INotificationEvent(const INotificationId& identifier,
 INotifier& notifier,

Boolean notifierAttrChanged = true,
const IEventData& eventData = IEventData (),
const IEventData& observerData = IEventData ());

You can construct an INotificationEvent object using a notification identifier, a

reference to a notifier object derived from INotifier, and a Boolean indicator of

 Copyright IBM Corp. 1993, 1995 403

INotificationEvent

whether this event describes a change in an attribute of the notifier. The notifier can

also include data specific to the particular notification. This data is documented with

the notification IDs in the definition of the derived notifier class. The notifier must

also add observer data to the event if the observer provided this data when registering

with the notifier.

2 INotificationEvent(const INotificationEvent& event);

You can construct an INotificationEvent object using a copy of an existing

notification event.

operator = Replaces the contents of one INotificationId object with another INotification object.

INotificationEvent& operator =(const INotificationEvent& event);

Destructor ˜INotificationEvent();

 Event Attributes
Use these members to get and set the attributes of objects of this class.

eventData Returns the data specific to the event.

IEventData eventData() const;

 hasNotifierAttrChanged

Returns true if the event represents a change in an attribute of the notifier object.

Boolean hasNotifierAttrChanged() const;

notificationId Returns the INotificationId for the event. The derived INotifier classes document

the notification identifiers.

INotificationId notificationId() const;

notifier Returns a reference to the notifier object.

INotifier& notifier() const;

observerData Returns observer data that is added when the observer registers with the notifier

object.

IEventData observerData() const;

setEventData Stores event data that is specific to a particular notification. The existence and type

of the event data is documented with the notification IDs in the definition of the

derived notifier class.

INotificationEvent& setEventData(const IEventData& eventData);

404 VisualAge C++ Open Class Library Reference

INotificationEvent

 setNotifierAttrChanged

Indicates that the notification event is a change in one of the notifier's attributes.

INotificationEvent&
setNotifierAttrChanged(Boolean notifierAttrchanged = true);

 setObserverData

Stores observer data in the notification event. The observer provides this data when it

registers with a notifier by calling the INotifier::addObserver protected member

function.

INotificationEvent& setObserverData(const IEventData& observerData);

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

 INotificationEvent 405

INotificationEvent

406 VisualAge C++ Open Class Library Reference

INotifier

INotifier

Derivation IBase

 IVBase

 INotifier

Inherited By IStandardNotifier

IWindow

Header File inotify.hpp

Members Member Page Member Page

Constructor 408 notifyObservers 408

addObserver 410 observerList 410

disableNotification 408 removeAllObservers 410

enableNotification 408 removeObserver 410

isEnabledForNotification 408 ˜INotifier 408

The class INotifier defines the notification protocol that objects that support

observation must supply. Because this class is an abstract base class, you cannot

construct objects of this class. All IBM User Interface Class Library window classes

inherit the notification process from INotifier.

You can implement a notification protocol in the following way:

¹ Derive a class from the IStandardNotifier class which inherits from INotifier for a

direct implementation of the INotifier protocol

¹ Derive from the INotifier class and implement your own notification protocol

Because IWindow inherits from and implements the INotifier protocol, IWindow

provides a visual implementation. IStandardNotifier inherits from INotifier and can

be used for any generic notifier, visual or not. You might want to derive your classes

from IStandardNotifier if you are providing a nonvisual notifier.

INotifier objects define INotificationIds for each notification that the derived class

provides. You should document the details of these notifications, including any

notifier data, within the description of the notification IDs of the derived class

definition.

 Copyright IBM Corp. 1993, 1995 407

INotifier

INotifier objects notify their observers of all events after the observer requests

notification by calling INotifier::addObserver. The observer object must check the

notification ID and process the events it is interested in.

PM See Designing Parts For Fun and Profit for more information on part construction.

 Public Functions

Constructor and Destructor
This class is an abstract base class therefore objects cannot be constructed.

Constructor INotifier();

Destructor virtual ˜INotifier();

 Notification Members
Use these members to affect the ability of INotifier to notify observers of events.

 disableNotification

Stops the notifier from sending notifications to its observers.

virtual INotifier& disableNotification() = 0;

 enableNotification

Starts the notifier sending notifications to its observers. This function can be

overridden by derived classes to perform customized notification that your application

might need. For instance, one of your function methods may require that a data base

be accessible before processing a retrieve function.

virtual INotifier& enableNotification(Boolean enable = true) = 0;

 isEnabledForNotification

Returns true if a notifier can send notifications to its observers.

virtual Boolean isEnabledForNotification() const = 0;

 Observer Notification
These members notify observers of a change in a notifier.

 notifyObservers

Notifies all observers in a notifier's list of observers. Each observer receives a

notification event containing the identity of the notifier, the notification ID, and any

optional data provided by the specific notifier object.

408 VisualAge C++ Open Class Library Reference

INotifier

Note: A public and a protected version of notifyObservers are provided for

convenience. The protected version does not require the caller to construct an

INotificationEvent to call it. In this case, the construction of the

INotificationEvent occurs in the code of the protected notifyObservers

function.

virtual INotifier&
notifyObservers(const INotificationEvent& event) = 0;

Inherited Public Functions

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 INotifier 409

INotifier

 Protected Functions

Observer Addition and Removal
IObserver objects use these members to add and remove themselves from the notifier's collection.

addObserver Adds an observer to the notifier's list of observers.

virtual INotifier& addObserver(IObserver& observer,
const IEventData& userData) = 0;

observerList Returns the list of observers. If the observer list does not exist, the derived notifier

class must create it before calling this member function.

virtual IObserverList& observerList() const = 0;

 removeAllObservers

Removes all observers from the notifier's list of observers.

virtual INotifier& removeAllObservers() = 0;

 removeObserver

Removes an observer from the notifier's list of observers.

virtual INotifier& removeObserver(IObserver& observer) = 0;

 Observer Notification
These members notify observers of a change in a notifier.

 notifyObservers

Notifies all observers in a notifier's list of observers. Each observer receives a

notification event containing the identity of the notifier, the notification ID, and any

optional data provided by the specific notifier object.

Note: A public and a protected version of notifyObservers are provided for

convenience. The protected version does not require the caller to construct an

INotificationEvent to call it. In this case, the construction of the

INotificationEvent occurs in the code of the protected notifyObservers

function.

virtual INotifier& notifyObservers(const INotificationId& id) = 0;

Inherited Protected Data

IBase

recoverable unrecoverable

410 VisualAge C++ Open Class Library Reference

IObserver

IObserver

Derivation IBase

 IVBase

 IObserver

Inherited By None.

Header File iobservr.hpp

Members Member Page Member Page

Constructor 412 stopHandlingNotificationsFor 412

dispatchNotificationEvent 412 ˜IObserver 411

handleNotificationsFor 411

The IObserver class is the abstract base class for all objects that are to be notified of

changes in the state of other objects in the system. You can derive objects that

require notification from this class and implement the function

dispatchNotificationEvent to process specific events.

 Public Functions

Constructor and Destructor
Only derived classes can create objects of this class. To enforce this, the only constructor has

protected access.

Destructor virtual ˜IObserver();

 Event Dispatching
Use these members to evaluate events and determine if it is appropriate for an observer object to

process it. They also attach the observer to and detach the observer from the INotifier object.

 handleNotificationsFor

Attaches the observer to the INotifier object argument. The observer is notified of

events after the notifier object has been enabled for notifications.

virtual IObserver& handleNotificationsFor(INotifier& notifier,
const IEventData& userData = IEventData ());

 Copyright IBM Corp. 1993, 1995 411

IObserver

 stopHandlingNotificationsFor

Detaches the observer from the argument INotifier object.

virtual IObserver&
stopHandlingNotificationsFor(INotifier& notifier);

Inherited Public Functions

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

 Constructor
Only derived classes can create objects of this class. To enforce this, the only constructor has

protected access.

Constructor The default constructor.

IObserver();

 Event Dispatching
Use these members to evaluate events and determine if it is appropriate for an observer object to

process it. They also attach the observer to and detach the observer from the INotifier object.

 dispatchNotificationEvent

Notifies an observer of an event in a notification enabled object. The notification

also includes event specific information.

virtual IObserver&
dispatchNotificationEvent(const INotificationEvent& event) = 0;

Inherited Protected Data

IBase

recoverable unrecoverable

412 VisualAge C++ Open Class Library Reference

IObserverList

IObserverList

Derivation IBase

 IVBase

 IObserverList

Inherited By None.

Header File iobslist.hpp

Members Member Page Member Page

Constructor 413 numberOfElements 414

add 414 remove 414

elementAt 414 removeAll 414

isEmpty 414 removeAt 414

notifyObservers 414 ˜IObserverList 413

The IObserverList class provides the interface for a list of IObserver objects. This

class implements the list of observers as an ordered list that can be traversed with

cursor logic.

 Public Functions

Constructor and Destructor
You can construct and destruct objects of this class.

Constructor IObserverList();

You may only construct objects of this class using the default constructor that takes

no arguments.

Destructor virtual ˜IObserverList();

 Copyright IBM Corp. 1993, 1995 413

IObserverList

Observer Addition and Removal
Use these members to add, remove, and find IObserver objects in the observer list's collection.

add Adds an observer to the end of the list.

virtual Boolean add(IObserver& observer, void* userData);

elementAt Returns an observer from the list using the specified cursor object.

virtual IObserver& elementAt(const Cursor& cursor) const;

isEmpty Returns true if there are no observers in the list.

Boolean isEmpty() const;

 numberOfElements

Returns the number of observers in the list.

unsigned long numberOfElements() const;

remove Removes the specified observer from the list.

virtual IObserverList& remove(const IObserver& observer);

removeAll Removes all observers from the list.

virtual IObserverList& removeAll();

removeAt Removes an observer at the specified cursor location from the list.

virtual IObserverList& removeAt(const Cursor& cursor);

 Observer Notification
These members notify observers of a change in a notifier.

 notifyObservers

Traverses the list of observers and calls each member’s dispatchNotificationEvent

function passing a specified notification event object.

IObserverList& notifyObservers(const INotificationEvent& event);

Inherited Public Functions

IVBase

asDebugInfo asString

414 VisualAge C++ Open Class Library Reference

IObserverList

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

 Nested Classes

IObserverList contains the following nested classes:

IObserverList::Cursor (see page 417)

 IObserverList 415

IObserverList

416 VisualAge C++ Open Class Library Reference

IObserverList::Cursor

IObserverList::Cursor

Derivation IBase

 IVBase

 IObserverList::Cursor

Inherited By None.

Header File iobslist.hpp

Members Member Page Member Page

Constructor 417 setToLast 418

Cursor 417 setToNext 418

invalidate 417 setToPrevious 418

isValid 417 ˜Cursor 417

setToFirst 418

This is a nested cursor class used to iterate over the observers added to an INotifier.

 Public Functions

Constructor and Destructor
You can construct and destruct objects of this class.

Constructor Create an IObserverList::Cursor by providing a reference to an IObserverlist.

Cursor(IObserverList& observerList);

Destructor virtual ˜Cursor();

 Cursor Movement
These members provide cursor movement operations.

invalidate Marks the cursor as invalid.

virtual void invalidate();

isValid Returns true if the cursor is on a valid observer.

virtual Boolean isValid() const;

 Copyright IBM Corp. 1993, 1995 417

IObserverList::Cursor

setToFirst Set the cursor position to the first observer in the list.

virtual Boolean setToFirst();

setToLast Sets the cursor position to the last observer in the list.

virtual Boolean setToLast();

setToNext Advances the cursor position to the next observer in the list.

virtual Boolean setToNext();

 setToPrevious

Sets the cursor position to the prior observer in the list.

virtual Boolean setToPrevious();

Inherited Public Functions

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

418 VisualAge C++ Open Class Library Reference

IOutOfMemory

IOutOfMemory

Derivation IException

 IResourceExhausted

 IOutOfMemory

Inherited By None.

Header File iexcbase.hpp

Members Member Page

Constructor 419

name 420

Objects of the IOutOfMemory class represent an exception. The User Interface Class

Library’s new_handler function creates an object of the IOutOfMemory class when

heap memory is exhausted.

 Public Functions

 Constructor
You can construct objects of this class.

Constructor You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is unrecoverable.

¹ Using the macros discussed in IException (p. 379). The library provides these

macros to make creating exceptions easier for you.

IOutOfMemory(const char* errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

 Copyright IBM Corp. 1993, 1995 419

IOutOfMemory

 Exception Type
Use these members to determine the name (type) of the exception. This is used for logging out

an exception object's error information.

name Returns the name of the object’s class.

virtual const char* name() const;

Inherited Public Functions

IResourceExhausted

name

IException

addLocation locationAtIndex setSeverity

appendText locationCount setText

assertParameter logExceptionData setTraceFunction

errorCodeGroup name terminate

errorId setErrorCodeGroup text

isRecoverable setErrorId textCount

Inherited Public Data

IException

baseLibrary CLibrary operatingSystem

420 VisualAge C++ Open Class Library Reference

IOutOfSystemResource

IOutOfSystemResource

Derivation IException

 IResourceExhausted

 IOutOfSystemResource

Inherited By None.

Header File iexcbase.hpp

Members Member Page

Constructor 421

name 422

Objects of the IOutOfSystemResource class represent an exception. When a member

function makes an operating system resource request that the system cannot satisfy,

the member function creates and throws an object of the IOutOfSystemResource

class.

 Public Functions

 Constructor
You can construct objects of this class.

Constructor You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is unrecoverable.

¹ Using the macros discussed in IException (p. 379). The library provides these

macros to make creating exceptions easier for you.

IOutOfSystemResource(const char* errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

 Copyright IBM Corp. 1993, 1995 421

IOutOfSystemResource

 Exception Type
Use these members to determine the name (type) of the exception. This is used for logging out

an exception object's error information.

name Returns the name of the object’s class.

virtual const char* name() const;

Inherited Public Functions

IResourceExhausted

name

IException

addLocation locationAtIndex setSeverity

appendText locationCount setText

assertParameter logExceptionData setTraceFunction

errorCodeGroup name terminate

errorId setErrorCodeGroup text

isRecoverable setErrorId textCount

Inherited Public Data

IException

baseLibrary CLibrary operatingSystem

422 VisualAge C++ Open Class Library Reference

IOutOfWindowResource

IOutOfWindowResource

Derivation IException

 IResourceExhausted

 IOutOfWindowResource

Inherited By None.

Header File iexcbase.hpp

Members Member Page

Constructor 423

name 424

Objects of the IOutOfWindowResource class represent an exception. When a

member function makes a presentation (window) system resource request that the

system cannot satisfy, the member function creates and throws an object of the

IOutOfWindowResource class.

 Public Functions

 Constructor
You can construct objects of this class.

Constructor You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is unrecoverable.

¹ Using the macros discussed in IException (p. 379). The library provides these

macros to make creating exceptions easier for you.

IOutOfWindowResource(const char* errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

 Copyright IBM Corp. 1993, 1995 423

IOutOfWindowResource

 Exception Type
Use these members to determine the name (type) of the exception. This is used for logging out

an exception object's error information.

name Returns the name of the object’s class.

virtual const char* name() const;

Inherited Public Functions

IResourceExhausted

name

IException

addLocation locationAtIndex setSeverity

appendText locationCount setText

assertParameter logExceptionData setTraceFunction

errorCodeGroup name terminate

errorId setErrorCodeGroup text

isRecoverable setErrorId textCount

Inherited Public Data

IException

baseLibrary CLibrary operatingSystem

424 VisualAge C++ Open Class Library Reference

IPair

IPair

Derivation IBase

 IPair

Inherited By IPoint

IRange

ISize

Header File ipoint.hpp

Members Member Page Member Page

Constructor 426 operator - 427

asDebugInfo 426 operator -= 428

asString 426 operator /= 428

coord1 427 operator < 426

coord2 427 operator <= 426

distanceFrom 429 operator == 426

dotProduct 429 operator > 426

maximum 428 operator >= 426

minimum 428 scaleBy 428

operator != 426 scaledBy 428

operator %= 427 setCoord1 427

operator *= 427 setCoord2 427

operator += 428 transpose 429

Objects of the IPair class are generic ordered pairs of coordinates. The class serves

as the base for the following specific ordered pair classes:

¹ IPoint (p. 431)

¹ ISize (p. 461)

¹ IRange (p. 439)

This class provides basic utilities to get and set the two coordinate values. In

addition, it provides a full set of comparison and mathematical operators to

manipulate ordered pairs.

 Copyright IBM Corp. 1993, 1995 425

IPair

 Public Functions

 Comparison Operators
Use these members to compare one IPair object to another.

operator != True if either coordinate differs.

Boolean operator !=(const IPair& aPair) const;

operator < True if both coordinates are less than those of the specified aPair.

Boolean operator <(const IPair& aPair) const;

operator <= True if both coordinates are less than or equal.

Boolean operator <=(const IPair& aPair) const;

operator == True if both coordinates match those of the specified aPair.

Boolean operator ==(const IPair& aPair) const;

operator > True if both coordinates are greater than those of the specified aPair.

Boolean operator >(const IPair& aPair) const;

operator >= True if both coordinates are greater than or equal.

Boolean operator >=(const IPair& aPair) const;

 Constructors
You can construct, copy, and assign objects of this class. This class uses the compiler-generated

copy constructor and assignment operator to copy and assign IPair objects.

Constructors IPair(Coord init);
IPair();
IPair(Coord coord1, Coord coord2);

 Conversions
Use these members to return an IPair object in a different form.

asDebugInfo Converts the ordered pair to an IString (p. 469) containing a diagnostic

representation of the object.

IString asDebugInfo() const;

asString Converts the ordered pair (a, b) to an IString((p. 469) "(a, b)").

IString asString() const;

426 VisualAge C++ Open Class Library Reference

IPair

operator - Returns an ordered pair whose coordinates are the difference between the

corresponding coordinates of pair1 and pair2.

When you use the unary format, it returns an ordered pair with negated coordinates.

IPair operator -() const;

 Coordinates
Use these members to query and change the ordered pair of integers in an IPair object.

coord1 Obtains the value of the first coordinate.

Coord coord1() const;

coord2 Obtains the value of the second coordinate.

Coord coord2() const;

setCoord1 Sets the value of the first coordinate.

IPair& setCoord1(Coord coord1);

setCoord2 Sets the value of the second coordinate.

IPair& setCoord2(Coord coord2);

 Manipulation
Use these members to alter the coordinate values of an IPair object. This includes both member

and non-member arithmetic operators and members to scale the value of an IPair object.

operator %= Replaces the coordinates with the remainder when divided by those of the following

specified parameter:

aPair

The library performs the remainder function between the corresponding

coordinates, coord1 with coord1 of aPair and coord2 with coord2.

divisor

The library performs the remainder function between each coordinate and the

divisor.

IPair& operator %=(long divisor);
IPair& operator %=(const IPair& aPair);

operator *= Multiplies the coordinates by those of the specified parameter:

aPair

The library performs the product function between the corresponding

coordinates, coord1 with coord1 of aPair and coord2 with coord2.

 IPair 427

IPair

multiplier

The library perform the product function between each coordinate and the

multiplier.

IPair& operator *=(double multiplier);
IPair& operator *=(const IPair& aPair);

operator += Adds the coordinates of the specified aPair to the coordinates of an ordered pair.

IPair& operator +=(const IPair& aPair);

operator -= Subtracts the coordinates specified in aPair from the IPair coordinates.

IPair& operator -=(const IPair& aPair);

operator /= Divides the coordinates by those of the second specified parameter:

aPair

The library performs the quotient function between the corresponding

coordinates, coord1 with coord1 of aPair and coord2 with coord2.

divisor

The library performs the product function between each coordinate and the

divisor.

IPair& operator /=(const IPair& aPair);
IPair& operator /=(double divisor);

scaleBy Scales the X-coordinate by xFactor, the Y-coordinate by yFactor.

IPair& scaleBy(double xFactor, double yFactor);

scaledBy Same as IPair::scaleBy (p. 428), but returns a new IPair, leaving the original

unmodified.

IPair scaledBy(double xFactor, double yFactor) const;

Minimum and Maximum
Use these members to determine the smaller or larger of two IPair objects.

maximum Returns an ordered pair whose coordinates are the maximum of the corresponding

coordinates of the IPair and the specified IPair.

IPair maximum(const IPair& aPair) const;

minimum Returns an ordered pair whose coordinates are the minimum of the corresponding

coordinates of the IPair and the specified IPair.

IPair minimum(const IPair& aPair) const;

428 VisualAge C++ Open Class Library Reference

IPair

 Miscellaneous
These members are additional, unrelated members of the IPair class.

 distanceFrom

Returns the distance from some other ordered pair.

double distanceFrom(const IPair& aPair) const;

dotProduct Returns the dot product with another ordered pair.

long dotProduct(const IPair& aPair) const;

transpose Swaps the coordinates of the ordered pair. The friend version of this function

returns a new pair with transposed coordinates.

IPair& transpose();

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

Nested Type Definitions

Coord typedef long Coord;

Type of the coordinate values (long integer).

 IPair 429

IPair

430 VisualAge C++ Open Class Library Reference

IPoint

IPoint

Derivation IBase

 IPair

 IPoint

Inherited By None.

Header File ipoint.hpp

Members Member Page Member Page

Constructor 431 setY 432

asPOINTL 432 x 432

setX 432 y 432

Objects of the IPoint class represent points in two-dimensional space. In addition to

all the functions inherited from its base class, IPair (p. 425), the IPoint class provides

additional functions.

PM You can also construct objects of this class from a Presentation Manager Toolkit

POINTL structure.

 Public Functions

 Constructors
You can create, copy, and assign objects of this class. This class uses the compiler-generated

copy constructor and assignment operator to copy and assign IPoint objects.

 Constructors

1 IPoint(const IPair& pair);
2 IPoint();
3 IPoint(Coord x, Coord y);
4 IPoint(const struct _POINTL& ptl); Supported On:

PM

 Conversions
Use these members to return an IPoint object in a different form.

 Copyright IBM Corp. 1993, 1995 431

IPoint

asPOINTL Renders the point as a Presentation Manager Toolkit POINTL structure.

struct _POINTL asPOINTL() const; Supported On:

PM

 Coordinates
Use these members to query and change the x and y coordinates of an IPoint object.

setX Sets the point's X-coordinate.

IPoint& setX(Coord X);

setY Sets the point's Y-coordinate.

IPoint& setY(Coord Y);

x Returns the point's X-coordinate.

Coord x() const;

y Returns the point's Y-coordinate.

Coord y() const;

Inherited Public Functions

IPair

asDebugInfo operator != operator <=

asString operator %= operator ==

coord1 operator *= operator >

coord2 operator += operator >=

distanceFrom operator - scaleBy

dotProduct operator -= scaledBy

maximum operator /= setCoord1

minimum operator < setCoord2

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

432 VisualAge C++ Open Class Library Reference

IPoint

Inherited Protected Data

IBase

recoverable unrecoverable

 IPoint 433

IPoint

434 VisualAge C++ Open Class Library Reference

IPointArray

IPointArray

Derivation IBase

 IPointArray

Inherited By None.

Header File iptarray.hpp

Members Member Page Member Page

Constructor 435 remove 436

add 436 resize 436

insert 436 reverse 436

operator != 435 reversed 436

operator = 436 size 437

operator == 435 ˜IPointArray 436

operator [] 436

The IPointArray class is used to represent an array of IPoint objects.

 Public Functions

 Comparisons
Use these members to compare two point arrays.

operator != Returns true if the arrays are not the same length or the points are not identical or

both.

operator !=(const IPointArray& pointArray) const;

operator == Returns true if the arrays are the same length and have identical points.

Boolean operator ==(const IPointArray& pointArray) const;

Constructors and Destructor
You can construct, copy, and assign objects of this class.

 Constructors

1 IPointArray(unsigned long dimension = 0, const IPoint* array = 0);

 Copyright IBM Corp. 1993, 1995 435

IPointArray

Use this function to construct a IPointArray object from two optional arguments. The

first argument specifies the length of the array and the second argument is a pointer

to an array of IPoint objects. The array of IPoints are used to initialize the

IPointArray object. If a pointer to an array of IPoint objects is specified, it is

assumed that the IPoint array has at least as many elements as the array dimension

specified.

2 IPointArray(const IPointArray& pointArray);

Use this function to construct a IPointArray object from an existing IPointArray

object.

 operator =
IPointArray& operator =(const IPointArray& pointArray);

Use this function to assign one IPointArray object to another. The target IPointArray

object is grown or shrunk to the size of the source IPointArray object.

Destructor ˜IPointArray();

 Data Access
Use these members to access attributes of objects of this class.

add Adds a point to the end of the array.

IPointArray& add(const IPoint& point);

insert Inserts a point before the index specified.

IPointArray& insert(unsigned long index, const IPoint& point);

operator [] Returns a reference to the point at the specified index.

IPoint& operator [](unsigned long index);
const IPoint& operator [](unsigned long index) const;

remove Removes a point at the specified index.

IPointArray& remove(unsigned long index);

resize Increases or decreases the size of the array. New points are initialized to 0,0.

IPointArray& resize(unsigned long newsize);

reverse Reverses the elements in the array.

IPointArray& reverse();

reversed Returns a copy of the point array with its elements reversed.

436 VisualAge C++ Open Class Library Reference

IPointArray

IPointArray reversed() const;

size Returns the dimension of the array.

unsigned long size() const;

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

 IPointArray 437

IPointArray

438 VisualAge C++ Open Class Library Reference

IRange

IRange

Derivation IBase

 IPair

 IRange

Inherited By None.

Header File ipoint.hpp

Members Member Page Member Page

Constructor 439 setLowerBound 439

includes 440 setUpperBound 440

lowerBound 439 upperBound 440

Objects of the IRange class represent a range of IPair::Coord values between a

specified lower and upper bound (inclusive).

 Public Functions

 Constructors
You can construct, copy, and assign objects of this class. This class uses the compiler-generated

copy constructor and assignment operator to copy and assign IRange objects.

Constructors IRange(Coord lower, Coord upper);
IRange();
IRange(const IPair& aPair);

 Coordinates
Use these members to query and change the ordered pair of integers in an IRange object.

lowerBound Returns the lower bound of the range.

Coord lowerBound() const;

 setLowerBound

Sets the lower bound of the range.

IRange& setLowerBound(Coord lower);

 Copyright IBM Corp. 1993, 1995 439

IRange

 setUpperBound

Sets the upper bound of the range.

IRange& setUpperBound(Coord upper);

upperBound Returns the upper bound of the range.

Coord upperBound() const;

 Testing
Use these members to test coordinate values.

includes Returns true if the range contains the specified coordinate value.

Boolean includes(Coord aValue) const;

Inherited Public Functions

IPair

asDebugInfo operator != operator <=

asString operator %= operator ==

coord1 operator *= operator >

coord2 operator += operator >=

distanceFrom operator - scaleBy

dotProduct operator -= scaledBy

maximum operator /= setCoord1

minimum operator < setCoord2

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

440 VisualAge C++ Open Class Library Reference

IRectangle

IRectangle

Derivation IBase

 IRectangle

Inherited By None.

Header File irect.hpp

Members Member Page Member Page

Constructor 443 minXMinY 449

area 444 minY 445

asDebugInfo 444 moveBy 445

asRECTL 444 movedBy 445

asString 444 movedTo 446

bottom 449 moveTo 446

bottomCenter 449 operator != 442

bottomLeft 449 operator & 447

bottomRight 449 operator &= 447

center 450 operator == 442

centerAt 445 operator | 447

centeredAt 445 operator |= 448

centerXCenterY 448 right 450

centerXMaxY 448 rightCenter 450

centerXMinY 448 scaleBy 446

contains 451 scaledBy 446

expandBy 445 shrinkBy 446

expandedBy 445 shrunkBy 446

height 444 size 445

intersects 451 sizeBy 447

left 450 sizedBy 447

leftCenter 450 sizedTo 447

maxX 444 sizeTo 447

maxXCenterY 448 top 450

maxXMaxY 448 topCenter 450

maxXMinY 448 topLeft 450

maxY 444 topRight 450

minX 445 validate 451

minXCenterY 448 width 445

minXMaxY 448

 Copyright IBM Corp. 1993, 1995 441

IRectangle

Objects of the IRectangle class represent a rectangular area defined by two points that

form opposite corners of the rectangle. These two points are referred to as the

minimum and maximum points.

IRectangle objects are designed to be usable independently of the coordinate system

in use. The minimum, or origin, is defined as the point with the lowest coordinate

values. Therefore, in a coordinate space where 0,0 is the upper left and increasing a

point's coordinate value moves it to the right and down, the minimum point of an

IRectangle will be the top left corner and the maximum corner the lower right corner.

Conversely, in a coordinate space where 0,0 is the lower left corner and increasing a

point's coordinate value moves it to the right and up, the minimum corner of an

IRectangle will be the lower left, and the maximum corner the top right.

IRectangle provides some member functions which use the terms "right", "left", "top",

and "bottom". These are synonyms for the functions defined in terms of minimum

and maximum corners. The directional orientation for the right/left/top/bottom

functions is correct for a coordinate space where 0,0 is the lower left corner. For

other coordinate systems, left and bottom are the sides of the rectangle with the

lowest coordinate value, and top and right the sides with the highest.

Mathematically, a rectangle includes all the points on the lines that intersect its

minimum corner. It does not include the points that lie on its edges that do not

intersect the origin. This is important when you are doing detailed graphics work.

For example, a rectangle specified as having a minimum of 0,0 and maximum of

10,20 will include the points 0,0 though 0,19 but will not include 0,20. Similarly, the

points 1,0 through 9,0 are contained but 10,0 is not.

Various graphics and windowing classes, as well as their member functions, use

rectangles.

PM You can also construct objects of this class by providing a Presentation Manager

Toolkit RECTL structure.

 Public Functions

 Comparisons
Use these members to compare two rectangles for equality or inequality.

operator != If the rectangles differ, true is returned.

Boolean operator !=(const IRectangle& rectangle) const;

operator == If the two rectangles are identical, true is returned. Identity of rectangles means that

the two defining points are the same.

442 VisualAge C++ Open Class Library Reference

IRectangle

Boolean operator ==(const IRectangle& rectangle) const;

 Constructors
You can construct, copy, and assign objects of this class.

Note: The library constructs rectangles by taking the two points that are given (or implied) as

opposite corners. The minimum point, or origin, is set to be the lesser of the two points.

This ensures that internally the origin and corner points always are such that the origin is

less than or equal to the corner.

 Constructors

1 IRectangle(const IPair& pair);

Constructs a rectangle with corners at 0,0 and the specified location. The lower of

aPair and 0,0 will be the origin of the rectangle.

2 IRectangle();

Constructs a rectangle at (0,0),(0,0).

3 IRectangle(const IPoint& point1, const IPoint& point2);

Constructs a rectangle from two points at opposite corners.

4 IRectangle(const IPoint& point, const ISize& size);

Creates a rectangle from a point and size. The maximum point is calculated by

adding the width of the size to the x coordinate of the given point and adding the

height of the size to the y coordinate of the given point.

5 IRectangle(Coord point1X, Coord point1Y,
Coord point2X, Coord point2Y);

Constructs a rectangle from four values representing coordinates of the corners.

point1X

The X coordinate of point 1.

point1Y

The Y coordinate of point 1.

point2X

The X coordinate of point 2.

point2Y

The Y coordinate of point 2.

6 IRectangle(const struct _RECTL& rectl); Supported On:

PM

Constructs a rectangle from a PM toolkit RECTL structure.

 IRectangle 443

IRectangle

7 IRectangle(Coord width, Coord height);

Constructs a rectangle of the specified size. The size is specified as

width

The width of the rectangle.

height

The height of the rectangle.

 Conversions
Use these members to convert a rectangle into various formats.

asDebugInfo Renders the rectangle as a diagnostic representation.

IString asDebugInfo() const;

asRECTL Converts the rectangle into a system dependent structure.

struct _RECTL asRECTL() const; Supported On:

PM

PM Renders the rectangle as a Presentation Manager Toolkit RECTL structure.

asString Renders the rectangle as an IString("IRectangle(x1,y1,x2,y2)").

IString asString() const;

 Dimensions
Use these members to obtain information about a rectangle's size.

area Returns the area of the rectangle. The area is determined by multiplying the width

of the rectangle by the height. For example, a rectangle defined from IPoint(1,1),

IPoint(10,20) would have an area of 9*19, or 171.

Coord area() const;

height Returns the height of the rectangle. The height is determined by subtracting the y

coordinate of the minimum point from the y coordinate of the maximum point.

Coord height() const;

maxX Returns the X-coordinate of the vertical line that is opposite the origin of the

rectangle.

Coord maxX() const;

maxY Returns the Y-coordinate of the horizontal line opposite the origin.

Coord maxY() const;

444 VisualAge C++ Open Class Library Reference

IRectangle

minX Returns the X-coordinate of the vertical line that passes though the origin.

Coord minX() const;

minY Returns the Y-coordinate of the horizontal line that passes though the origin of the

rectangle.

Coord minY() const;

size Returns the ISize(width, height).

ISize size() const;

width Returns the width of the rectangle. The width is determined by subtracting the x

coordinate of the minimum point from the x coordinate of the maximum point.

Coord width() const;

 Manipulation
Use these members to modify the rectangle, changing its size, proportions, or location.

centerAt Moves the rectangle so that its center is at the specified point.

IRectangle& centerAt(const IPoint& point);

centeredAt Same as IRectangle::centerAt (p. 445), but returns a new rectangle, leaving the

original unmodified.

IRectangle centeredAt(const IPoint& point) const;

expandBy Moves the corners of the rectangle outward from the center by the specified amount.

The specified amount can be either a scalar (long integer) or a point.

IRectangle& expandBy(const IPair& pair);
IRectangle& expandBy(Coord coord);

expandedBy Same as IRectangle::expandBy (p. 445), but returns a new rectangle, leaving the

original unmodified.

IRectangle expandedBy(const IPair& pair) const;
IRectangle expandedBy(Coord coord) const;

moveBy Moves the rectangle by the amount specified by aPair.

IRectangle& moveBy(const IPair& pair);

movedBy Same as IRectangle::moveBy (p. 445), but returns a new rectangle, leaving the

original unmodified.

IRectangle movedBy(const IPair& pair) const;

 IRectangle 445

IRectangle

movedTo Same as IRectangle::moveTo (p. 446), but returns a new rectangle, leaving the

original unmodified.

IRectangle movedTo(const IPoint& point) const;

moveTo Moves the rectangle so that its origin corner is at the specified point.

IRectangle& moveTo(const IPoint& point);

scaleBy Scales the rectangle by the specified amount. Scaling a rectangle multiplies its

coordinates by the scale amount.

1 IRectangle& scaleBy(Coord coord);

Scales by a long integer value.

2 IRectangle& scaleBy(const IPair& pair);

Scales by a point specifying the amounts in the X- and Y-axis directions.

3 IRectangle& scaleBy(double factor);

Scales by a double value.

4 IRectangle& scaleBy(double xfactor, double yfactor);

Scales by a pair of doubles. The function uses the first double to scale in the X-axis

direction, the second in the Y-axis direction.

scaledBy Same as IRectangle::scaleBy (p. 446), but returns a new rectangle, leaving the

original unmodified.

IRectangle scaledBy(double xfactor, double yfactor) const;
IRectangle scaledBy(const IPair& pair) const;
IRectangle scaledBy(Coord coord) const;
IRectangle scaledBy(double factor) const;

shrinkBy Moves the corners of the rectangle inward toward the center by the specified

amount, either a scalar or a point.

Note: shrinkBy(anAmount) is always equivalent to expandBy(- anAmount), and vice

versa.

IRectangle& shrinkBy(Coord coord);
IRectangle& shrinkBy(const IPair& pair);

shrunkBy Same as IRectangle::shrinkBy (p. 446), but returns a new rectangle, leaving the

original unmodified.

IRectangle shrunkBy(const IPair& pair) const;
IRectangle shrunkBy(Coord coord) const;

446 VisualAge C++ Open Class Library Reference

IRectangle

sizeBy Scales the rectangle by the specified value, leaving the rectangle at the same location

because the bottom-left point remains fixed.

1 IRectangle& sizeBy(const IPair& pair);

Scales by a pair of integer scalars specifying different factors in the X-axis and

Y-axis directions.

2 IRectangle& sizeBy(Coord factor);

Scales by the same integer factor in both the X-axis and Y-axis directions.

3 IRectangle& sizeBy(double factor);

Scales by the same double factor in both the X-axis and Y-axis directions.

4 IRectangle& sizeBy(double xfactor, double yfactor);

Scales by two doubles specifying factors in the X-axis and Y-axis directions,

respectively.

sizedBy Same as IRectangle::sizeBy (p. 447), but returns a new rectangle, leaving the

original unmodified.

IRectangle sizedBy(double factor) const;
IRectangle sizedBy(const IPair& pair) const;
IRectangle sizedBy(Coord factor) const;
IRectangle sizedBy(double xfactor, double yfactor) const;

sizedTo Same as IRectangle::sizeTo (p. 447), but returns a new rectangle, leaving the

original unmodified.

IRectangle sizedTo(const IPair& pair) const;

sizeTo Sizes the rectangle to the specified size.

IRectangle& sizeTo(const IPair& pair);

 Manipulation Operators
Use these members to find a rectangle's union and intersection with another rectangle.

operator & Returns a rectangle representing the intersection of the specified rectangles.

IRectangle operator &(const IRectangle& rectangle) const;

operator &= Resets the rectangle to its intersection with the specified rectangle.

IRectangle& operator &=(const IRectangle& rectangle);

operator | Returns the rectangle representing the union of the specified rectangles. This is the

smallest rectangle that encompasses both specified rectangles.

IRectangle operator |(const IRectangle& rectangle) const;

 IRectangle 447

IRectangle

operator |= Resets the rectangle to its union with the specified rectangle.

IRectangle& operator |=(const IRectangle& rectangle);

 Points
Use these members to access points on or within the rectangle. You can query any of nine points

on a rectangle's perimeter or its center by using these members.

 centerXCenterY

Returns the X- and Y-coordinates of the center point of the rectangle.

IPoint centerXCenterY() const;

centerXMaxY Returns the X- and Y-coordinates of the center point of the horizontal line opposite

the origin of the rectangle.

IPoint centerXMaxY() const;

centerXMinY Returns the X- and Y-coordinates of the center point of the horizontal line passing

through the origin of the rectangle.

IPoint centerXMinY() const;

 maxXCenterY

Returns the X- and Y-coordinates of the center point of the vertical line opposite the

origin of the rectangle.

IPoint maxXCenterY() const;

maxXMaxY Returns the X- and Y-coordinates of the corner of the rectangle opposite the origin.

IPoint maxXMaxY() const;

maxXMinY Returns the X- and Y-coordinates of the corner of the rectangle at the other end of

the horizontal line passing though the origin.

IPoint maxXMinY() const;

minXCenterY Returns the X- and Y-coordinates of the center of the vertical line that passes

through the origin.

IPoint minXCenterY() const;

minXMaxY Returns the X- and Y-coordinates of the corner of the rectangle at the other end of

the vertical line passing though the origin.

IPoint minXMaxY() const;

448 VisualAge C++ Open Class Library Reference

IRectangle

minXMinY Returns the X- and Y-coordinates of the origin corner of the rectangle.

IPoint minXMinY() const;

 Synonyms
Use these members when you are working in a coordinate space where 0,0 is the lower left

corner. In this case the right/left/top/bottom orientation is correct. You can still use these

members in other coordinate systems, but left and bottom are the sides of the rectangle with the

lowest coordinate value, and top and right are the sides with the highest.

The following table lists the members and synonyms defined for them:

Function Synonym

minXMinY bottomLeft

minXCenterY leftCenter

minXMaxY topLeft

centerXMinY bottomCenter

centerXCenterY center

centerXMaxY topCenter

maxXMinY bottomRight

maxXCenterY rightCenter

maxXMaxY topRight

minX left

minY bottom

maxX right

maxY top

bottom Returns the Y-coordinate of the horizontal line that forms the bottom of the

rectangle. This is an alias for IRectangle::minY (p. 445).

Coord bottom() const;

 bottomCenter

Returns the X- and Y-coordinates of the bottom-center point of the rectangle. This is

an alias for IRectangle::centerXMinY (p. 448).

IPoint bottomCenter() const;

bottomLeft Returns the X- and Y-coordinates of the bottom-left corner of the rectangle This is

an alias for IRectangle::minXMinY (p. 449).

IPoint bottomLeft() const;

bottomRight Returns the X- and Y-coordinates of the bottom-right corner of the rectangle. This

is an alias for IRectangle::maxXMinY (p. 448).

IPoint bottomRight() const;

 IRectangle 449

IRectangle

center Returns the X- and Y-coordinates of the center point of the rectangle. This is an

alias for IRectangle::centerXCenterY (p. 448).

IPoint center() const;

left Returns the X-coordinate of the vertical line that forms the left side of the rectangle.

This is an alias for IRectangle::minX (p. 445).

Coord left() const;

leftCenter Returns the X- and Y-coordinates of the left-center point of the rectangle. This is

an alias for IRectangle::minXCenterY (p. 448).

IPoint leftCenter() const;

right Returns the X-coordinate of the vertical line that forms the right side of the

rectangle. This is an alias for IRectangle::maxX (p. 444).

Coord right() const;

rightCenter Returns the X- and Y-coordinates of the right-center point of the rectangle. This is

an alias for IRectangle::maxXCenterY (p. 448).

IPoint rightCenter() const;

top Returns the Y-coordinate of the horizontal line that forms the top of the rectangle.

This is an alias for IRectangle::maxY (p. 444).

Coord top() const;

topCenter Returns the X- and Y-coordinates of the top-center point of the rectangle. This is

an alias for IRectangle::centerXMaxY (p. 448).

IPoint topCenter() const;

topLeft Returns the X- and Y-coordinates of the top-left corner of the rectangle. This is an

alias for IRectangle::minXMaxY (p. 448).

IPoint topLeft() const;

topRight Returns the X- and Y-coordinates of the top-right corner of the rectangle. This is an

alias for IRectangle::maxXMaxY (p. 448).

IPoint topRight() const;

450 VisualAge C++ Open Class Library Reference

IRectangle

 Testing
Use these members to test various attributes of a rectangle.

contains If the rectangle contains the specified point or rectangle, true is returned. A point is

contained by a rectangle if its coordinates are greater than or equal to the minimum

point of the rectangle and less than the maximum point. A rectangle is contained

within another rectangle if its minimum point is greater than or equal to the

containing rectangle's minimum point and its maximum point is less than or equal to

the containing rectangle's maximum point.

Boolean contains(const IPoint& point) const;
Boolean contains(const IRectangle& rectangle) const;

intersects If the rectangle and specified rectangle overlap, true is returned.

Boolean intersects(const IRectangle& rectangle) const;

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

 Implementation
These members are used internally to implement the class.

validate Corrects an invalid rectangle after creation, expansion, or intersection.

IRectangle& validate();

Inherited Protected Data

IBase

recoverable unrecoverable

 IRectangle 451

IRectangle

Nested Type Definitions

Coord typedef IPair::Coord Coord;

Type of the coordinate values; this must match the type of the coordinates supported

by the IPair class.

452 VisualAge C++ Open Class Library Reference

IRefCounted

IRefCounted

Derivation IBase

 IVBase

 IRefCounted

Inherited By IDMItem IThreadFn

IDMOperation ITimerFn

IStringGeneratorFn

Header File irefcnt.hpp

Members Member Page Member Page

Constructor 454 useCount 454

addRef 453 ˜IRefCounted 454

removeRef 454

The IRefCounted class is a public base class for any class that is reference counted.

Such inheritance conveys the functional characteristics of maintaining a count of all

references to the object and deferring destruction until all such references are

destroyed.

By necessity, you can only allocate objects of this class in free store. The library

enforces this by making the destructor for this class protected. As a result, the library

only allows IRefCounted::removeRef (p. 454) and derived class destructors to call

IRefCounted::IRefCounted. Derived classes should make their destructors protected

also.

Typically, you use this class in conjunction with the corresponding IReference<T> (p.

455), where T is a derived class of IRefCounted.

 Public Functions

 Reference Counting
Use these members to manage the object's reference count.

addRef Adds a reference to the referred-to object.

virtual void addRef();

 Copyright IBM Corp. 1993, 1995 453

IRefCounted

removeRef Removes a reference to the referred-to object. When the reference count goes to 0,

this function deletes the referred-to object.

virtual void removeRef();

useCount Returns the use count for the referred-to object.

unsigned useCount() const;

Inherited Public Functions

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

Constructor and Destructor
These members are protected.

Constructor IRefCounted();

Destructor ˜IRefCounted();

Inherited Protected Data

IBase

recoverable unrecoverable

454 VisualAge C++ Open Class Library Reference

IReference

IReference

Derivation IBase

 IReference

Inherited By None.

Header File irefcnt.hpp

Members Member Page Member Page

Constructor 456 operator = 456

operator * 457 operator T * 457

operator -> 457 ˜IReference 456

The template class IReference is derived from classes that serve as references.

Objects of such classes serve as smart pointers to objects of the referenced class.

Creating objects of this class increments the use count of the referenced object.

Destruction of the object causes the use count of the referenced object to be

decremented.

Typically, this class is referenced explicitly only as a public base class of the class

that provides the additional capability of the reference class. For example:

class Foo { .. };
class FooRef : public IReference<Foo> {
// Additional FooRef functions...
};

The reference-counted class provided as the template argument is derived from the

class IRefCounted (p. 453). It must have the member functions IRefCounted::addRef

(p. 453) and IRefCounted::removeRef (p. 454) with equivalent semantics.

To construct an IReference, you must provide a pointer to an object of the referenced

(reference-counted) class. All constructors of the real reference class (derived from

IReference<T>) must provide such a pointer. Otherwise, the reference class has no

additional responsibilities.

 Copyright IBM Corp. 1993, 1995 455

IReference

Notes:

1. The semantics of such reference or referent classes can have subtle complexities.

The reference or the referent might behave in an extraordinary fashion.

2. A class can also serve as a reference by having as a data member an

IReference<T> object.

3. All members of the IReference class are public in order to permit the usage

described in item 2.

Customization (Template Argument)

IReference is a template class that is instantiated with the following template

argument:

T Specifies the name of the class of objects to which template class objects

refer.

 Public Functions

Constructors and Destructor
You can construct, destruct, copy, and assign objects of this class.

 Constructors

1 IReference(T* p = 0);

You can construct objects of this class by using this primary constructor which

accepts a pointer to an instance of the referenced class. This also serves as the

default constructor (defaulting the pointer parameter to 0).

2 IReference(const IReference < T >& source);

You can construct objects of this class by using this copy constructor which the

library provides to ensure that the reference counts for both the source and target

referents are maintained properly.

operator = The assignment operator. You can assign one IReference to another or you can

assign a pointer to the referenced type.

IReference < T >& operator =(const IReference < T >& source);
IReference < T >& operator =(T* p);

Destructor The destructor ensures that the referenced object is de-referenced.

˜IReference();

456 VisualAge C++ Open Class Library Reference

IReference

 Operators
Use these members to access the referenced object. Their effect is to make an IReference usable,

similar to a normal pointer.

operator * Pointer de-reference operator that provides access to the referenced object.

T& operator *() const;

operator -> Pointer operator that provides access to the referenced object.

T* operator ->() const;

operator T * Returns the referent.

operator T *() const;

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

 IReference 457

IReference

458 VisualAge C++ Open Class Library Reference

IResourceExhausted

IResourceExhausted

Derivation IException

 IResourceExhausted

Inherited By IOutOfMemory

IOutOfSystemResource

IOutOfWindowResource

Header File iexcbase.hpp

Members Member Page

Constructor 459

name 460

Objects of the IResourceExhausted class represent an exception. When a member

function makes a resource request of the operating system or the presentation system

that it cannot satisfy, the member function creates and throws an object of the

IResourceExhausted class or one of its derived classes. IResourceExhausted is the

generic out-of-resource class. Member functions use IResourceExhausted whenever

its derived classes, which are for specific out-of-resource cases, are not applicable.

The derived classes for IResourceExhausted are:

IOutOfMemory (p. 419)

IOutOfSystemResource (p. 421)

IOutOfWindowResource (p. 423)

 Public Functions

 Constructor
You can construct objects of this class.

Constructor You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

 Copyright IBM Corp. 1993, 1995 459

IResourceExhausted

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (p. 386) to specify the

severity of the error. The default is unrecoverable.

¹ Using the macros discussed in IException (p. 379). The library provides these

macros to make creating exceptions easier for you.

IResourceExhausted(const char* errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

 Exception Type
Use these members to determine the name (type) of the exception. This is used for logging out

an exception object's error information.

name Returns the name of the object’s class.

virtual const char* name() const;

Inherited Public Functions

IException

addLocation locationAtIndex setSeverity

appendText locationCount setText

assertParameter logExceptionData setTraceFunction

errorCodeGroup name terminate

errorId setErrorCodeGroup text

isRecoverable setErrorId textCount

Inherited Public Data

IException

baseLibrary CLibrary operatingSystem

460 VisualAge C++ Open Class Library Reference

ISize

ISize

Derivation IBase

 IPair

 ISize

Inherited By None.

Header File ipoint.hpp

Members Member Page Member Page

Constructor 461 setHeight 462

asSIZEL 461 setWidth 462

height 462 width 462

Objects of the ISize class use their coordinates to represent a rectangular size, in

horizontal and vertical dimensions.

PM You can also construct objects of this class using:

¹ A Presentation Manager Toolkit SIZEL structure.

¹ A Presentation Manager Toolkit RECTL structure; in this case, the resulting ISize

object represents the size of the RECTL.

 Public Functions

 Constructor
You can construct, copy, and assign objects of this class. This class uses the compiler-generated

copy constructor and assignment operator to copy and assign ISize objects.

Constructors ISize(const IPair& pair);
ISize();
ISize(Coord width, Coord height);
ISize(const SIZEL& sizl);
ISize(const struct _RECTL& rcl);

 Conversions
Use these members to return an ISize object in a different form.

asSIZEL Returns the ISize as a Presentation Manager Toolkit SIZEL structure.

 Copyright IBM Corp. 1993, 1995 461

ISize

SIZEL asSIZEL() const;

 Coordinates
Use these members to query and change the ordered pair of integers in an ISize object.

height Returns the height represented by the ISize object.

Coord height() const;

setHeight Sets the size’s height.

ISize& setHeight(Coord cy);

setWidth Sets the size’s width.

ISize& setWidth(Coord cx);

width Returns the width represented by the ISize object.

Coord width() const;

Inherited Public Functions

IPair

asDebugInfo operator != operator <=

asString operator %= operator ==

coord1 operator *= operator >

coord2 operator += operator >=

distanceFrom operator - scaleBy

dotProduct operator -= scaledBy

maximum operator /= setCoord1

minimum operator < setCoord2

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

462 VisualAge C++ Open Class Library Reference

IStandardNotifier

IStandardNotifier

Derivation IBase

 IVBase

 INotifier

 IStandardNotifier

Inherited By IMMDevice

IMMMasterAudio

Header File istdntfy.hpp

Members Member Page Member Page

Constructor 464 notifyObservers 465

addObserver 465 observerList 465

deleteId 466 operator = 464

disableNotification 464 removeAllObservers 466

enableNotification 464 removeObserver 466

isEnabledForNotification 464 ˜IStandardNotifier 464

The IStandardNotifier class provides a direct implementation of the notification

protocol in the INotifier class.

You can implement a notification protocol in the following way:

¹ Derive a class from the IStandardNotifier class which inherits from INotifier for a

direct implementation of the INotifier protocol

¹ Derive from the INotifier class and implement your own notification protocol

Because IWindow inherits from and implements the INotifier protocol, IWindow

provides a visual notification implementation. IStandardNotifier inherits from

INotifier and can be used for any generic notifier, without the visual interface

available in IWindow objects. You might want to derive your classes from

IStandardNotifier if you are providing a nonvisual notifier.

 Copyright IBM Corp. 1993, 1995 463

IStandardNotifier

 Public Functions

Constructors and Destructor
You can construct, destruct, assign, and copy objects of this class.

 Constructors

1 IStandardNotifier(const IStandardNotifier& copy);

You can construct an IStandardNotifier object using a copy of an existing

IStandardNotifier object.

2 IStandardNotifier();

You can construct objects of this class using the default constructor that takes no

arguments.

operator = Assigns the contents of one notifier object to another.

Note: The observer list is not copied.

IStandardNotifier&
operator =(const IStandardNotifier& aStandardNotifier);

Destructor virtual ˜IStandardNotifier();

 Notification Members
Use these members to affect the ability of a part to notify observers of events of interest.

 disableNotification

Stops the object from sending notifications to registered observers.

virtual IStandardNotifier& disableNotification();

 enableNotification

Starts the sending of notifications to observers.

virtual IStandardNotifier&
enableNotification(Boolean enable = true);

 isEnabledForNotification

Returns true if an object is sending notifications to its observers.

virtual Boolean isEnabledForNotification() const;

464 VisualAge C++ Open Class Library Reference

IStandardNotifier

 Observer Notification
These members notify observers of a change in a notifier.

 notifyObservers

Notifies all observers in an object's observer list.

Note: A public and a protected version of notifyObservers are provided for

convenience. The protected version does not require the caller to construct an

INotificationEvent (p. 403) to call it. In this case, the construction of the

INotificationEvent (p. 403) object occurs in the code of the protected

notifyObservers function.

virtual IStandardNotifier&
notifyObservers(const INotificationEvent& anEvent);

Inherited Public Functions

INotifier

disableNotification enableNotification isEnabledForNotification

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

Observer Addition and Removal
Use these members to manage the collection of observers maintained by the notifier.

addObserver Adds an observer to the object's list of observers.

virtual IStandardNotifier& addObserver(IObserver& observer,
const IEventData& userData = IEventData (0));

observerList Returns the list of IObservers. The list is created it if it does not exist.

virtual IObserverList& observerList() const;

 IStandardNotifier 465

IStandardNotifier

 removeAllObservers

Removes all observers from the object's observer list.

virtual IStandardNotifier& removeAllObservers();

 removeObserver

Removes an observer from the objects's observer list.

virtual IStandardNotifier& removeObserver(IObserver& observer);

 Observer Notification
These members notify observers of a change in a notifier.

notifyObservers

Notifies all observers in an object's observer list.

Note: A public and a protected version of notifyObservers are provided for

convenience. The protected version does not require the caller to construct an

INotificationEvent (p. 403) to call it. In this case, the construction of the

INotificationEvent (p. 403) object occurs in the code of the protected

notifyObservers function.

virtual IStandardNotifier&
notifyObservers(const INotificationId& nId);

Inherited Protected Functions

INotifier

addObserver notifyObservers observerList

 Public Data

Notification Event Descriptions
These INotificationId strings are used for all notifications that an IPart provides to its observers.

deleteId Notification identifier provided to observers when the notifier object is deleted.

Note: IStandardNotifier sends this notification from its destructor. This means that

the derived portions of the notifier have already been deleted. You should therefore

not cast the pointer to the notifier data, to an object that is derived from

IStandardNotifier. This operation is synchronous and therefore the pointer still points

to a valid object.

static INotificationId const deleteId;

466 VisualAge C++ Open Class Library Reference

IStandardNotifier

Inherited Protected Data

IBase

recoverable unrecoverable

 IStandardNotifier 467

IStandardNotifier

468 VisualAge C++ Open Class Library Reference

IString

IString

Derivation IBase

 IString

Inherited By I0String

Header File istring.hpp

Members Member Page Member Page

Constructor 473 insert 477

applyBitOp 495 isAbbrevFor 498

asDebugInfo 475 isAbbreviationFor 487

asDouble 492 isAlphabetic 491

asInt 492 isAlphanumeric 491

asString 475 isASCII 491

asUnsigned 492 isBinaryDigits 491

b2c 472 isControl 491

b2d 472 isDBCS 485

b2x 472 isDigits 491

buffer 497 isGraphics 491

c2b 472 isHexDigits 491

c2d 472 isLike 487

c2x 473 isLowerCase 491

center 475 isMBCS 486

change 475 isPrintable 492

charType 488 isPunctuation 492

copy 477 isSBCS 486

d2b 486 isUpperCase 492

d2c 486 isValidDBCS 486

d2x 486 isValidMBCS 486

data 498 isWhiteSpace 492

defaultBuffer 498 lastIndexOf 489

findPhrase 497 lastIndexOfAnyBut 489

includes 487 lastIndexOfAnyOf 490

includesDBCS 485 leftJustify 477

includesMBCS 485 length 488

includesSBCS 485 lengthOf 498

indexOf 481 lengthOfWord 493

indexOfAnyBut 481 lineFrom 490

indexOfAnyOf 481 lowerCase 477

indexOfPhrase 493 maxLong 499

indexOfWord 493 null 499

initBuffer 497

 Copyright IBM Corp. 1993, 1995 469

IString

Member Page Member Page

nullBuffer 499 rightJustify 478

numWords 493 setBuffer 497

occurrencesOf 482 size 488

operator & 482 space 494

operator &= 483 strip 478

operator + 483 stripBlanks 479

operator += 483 stripLeading 479

operator = 484 stripLeadingBlanks 479

operator char * 493 stripTrailing 479

operator signed char * 493 stripTrailingBlanks 480

operator unsigned char * 493 subString 488

operator [] 488 translate 480

operator ‸ 484 upperCase 480

operator ‸= 484 word 494

operator | 484 wordIndexOfPhrase 494

operator |= 485 words 494

operator ˜ 485 x2b 482

overlayWith 477 x2c 482

remove 478 x2d 482

removeWords 493 zero 499

reverse 478 ˜IString 475

Objects of the IString class are arrays of characters. These objects are functionally

equivalent to objects of the class I0String (p. 307) with one major distinction: IStrings

are indexed starting at 1 instead of 0.

IString provides an operator char*. In order to access the actual string contained in

an object of type IString, cast the assignment variable implicitly or explicitly.

IStrings provide the following functions beyond that available from the standard C

char* arrays and the STRING.H library functions:

¹ No restrictions on string contents. Thus, strings can contain NULL characters.

¹ Automatic conversion from and to numeric types.

¹ Automatic deletion of the string buffer when the IString is destroyed.

¹ Full support for the following:

– All comparison operators

– All bitwise operators

– Concatenation using the more natural + operator.

¹ String data testing, such as for characters, digits, and hexadecimal digits.

¹ A full complement of the following:

470 VisualAge C++ Open Class Library Reference

IString

– String manipulation functions, such as center, left- and right-justification,

stripping of leading and trailing characters, deleting substrings, and inserting

strings

– Corresponding string manipulation functions that return a new IString rather

than modifying the receiver

– String searching functions, such as byte index of string and last-byte index of

string.

¹ Word manipulation, such as index of word and search for word phrase.

¹ Support for mixed strings that contain both single-byte character set (SBCS) and

double-byte character set (DBCS) characters.

When a program using IStrings is run on a DBCS system, the IString objects support

DBCS characters within the string contents. The various IString search functions do

not accidentally match an SBCS character with the second byte of a DBCS character

that has the same value. Also, IString functions that modify IStrings, such as

subString (p. 488), remove (p. 478), and translate (p. 480), never separate the two

bytes of a DBCS character. If one of the two bytes of a DBCS character is removed,

the remaining byte is replaced with the appropriate pad character (if the function

performing the change has one) or a blank.

When working with IStrings that contain DBCS data, ensure that the contents are not

altered in such a way as to corrupt the data. For example, the statement:

aString[n] = 'x';

would be in error if the nth character of the IString was the first or second byte of a

DBCS character.

Note: Any function that reallocates an IString can throw an exception for

out-of-range errors. These occur if you attempt to construct an IString with a

length greater than UINT_MAX.

IStrings are held in IBuffers which allocate the area for the character arrays using the

C++ operator new. The only limitation for the size of an IString are the limitations

imposed by the operating system.

Motif DBCS is equivalent to Multiple-byte character set (MBCS).

 IString 471

IString

 Public Functions

 Binary Conversions
These members work if isBinaryDigits() == true; if not, they return a null string. The static

members by the same name can be applied to a string to return the modified string without

changing the argument string.

b2c Converts a string of binary digits to a normal string of characters. For example, this

function changes 01 to \x01 and 00110011 to 3.

Note: This function is not locale sensitive.

IString& b2c();
static IString b2c(const IString& aString);

b2d Converts a string of binary digits to a string of decimal digits. For example, this

function changes 00011001 to 25 and 0001001000110100 to 4660.

static IString b2d(const IString& aString);
IString& b2d();

b2x Converts a string of binary digits to a string of hexadecimal digits. For example, this

function changes 00011011 to 1b and 10001001000110100 to 11234.

static IString b2x(const IString& aString);
IString& b2x();

 Character Conversions
These members always work; they convert a string to binary, numeric or hexadecimal

representation. The static members by the same name can be applied to a string to return the

modified string without changing the argument string. These members are used much like the

similar REXX functions. For example:

aString.c2b(); // Changes aString.
String binaryDigits = IString::c2b(aString); // Leaves aString alone.

c2b Converts a normal string of characters to a string of binary digits. For example, this

function changes “a” to 01100001 and 12 to 11000100110010.

Note: This function is not locale-sensitive.

IString& c2b();
static IString c2b(const IString& aString);

c2d Converts a normal string of characters to a string of decimal digits. For example,

this function changes “a” to 97 and “ab” to 24930.

Note: This function is not locale sensitive.

472 VisualAge C++ Open Class Library Reference

IString

static IString c2d(const IString& aString);
IString& c2d();

c2x Converts a normal string of characters to a string of hexadecimal digits. For

example, this function changes 'a' to 61 and 'ab' to 6162.

Note: This function is not locale sensitive.

static IString c2x(const IString& aString);
IString& c2x();

Constructors and Destructor
You can construct objects of this class in the following ways:

¹ Construct a NULL string.

¹ Construct a string with the ASCII representation of a given numeric value, supporting all

flavors of integer and double.

¹ Construct a string with a copy of the specified character data, supporting ASCIIZ strings,

characters, and IStrings. The character data passed is converted to its ASCII representation.

¹ Construct a string with contents that consist of copies of up to three buffers of arbitrary data

(void*). Optionally, you only need to provide the length, in which case the IString contents

are initialized to a specified pad character. The default character is a blank.

These constructors can throw exceptions under the following conditions:

¹ Memory allocation errors

Many factors dynamically allocate space and these allocation requests may fail. If so, the

library translates memory allocation errors into exceptions. Generally, such errors do not

occur until you allocate an astronomical amount of storage.

 ¹ Out-of-range errors

These occur if you attempt to construct an IString with a length greater than UINT_MAX.

 Constructors

1 IString(const void* pBuffer1, unsigned lenBuffer1,
char padCharacter = ' ');

Construct a string with contents from one buffer of arbitrary data (void*).

2 IString();

Construct a NULL string.

3 IString(const IString& aString);

Construct a string with a copy of the specified IString.

 IString 473

IString

4 IString(int);

Construct a string with the ASCII representation of an integer value.

5 IString(unsigned);

Construct a string with the ASCII representation of an unsigned numeric value.

6 IString(long);

Construct a string with the ASCII representation of a long numeric value.

7 IString(unsigned long);

Construct a string with the ASCII representation of an unsigned long numeric value.

8 IString(short);

Construct a string with the ASCII representation of a short numeric value.

9 IString(unsigned short);

Construct a string with the ASCII representation of an unsigned short numeric value.

10 IString(double);

Construct a string with the ASCII representation of a double numeric value.

11 IString(char);

Construct a string with a copy of the character. The string length is set to 1.

12 IString(unsigned char);

Construct a string with a copy of the unsigned character. The string length is set to 1.

13 IString(signed char);

Construct a string with a copy of the signed character. The string length is set to 1.

14 IString(const char*);

Construct a string with a copy of the specified ASCIIZ string.

15 IString(const unsigned char*);

Construct a string with a copy of the specified unsigned ASCIIZ string.

16 IString(const signed char*);

Construct a string with a copy of the specified signed ASCIIZ string.

17 IString(const void* pBuffer1, unsigned lenBuffer1,
const void* pBuffer2, unsigned lenBuffer2,
char padCharacter = ' ');

Construct a string with contents from two buffers of arbitrary data (void*).

474 VisualAge C++ Open Class Library Reference

IString

18 IString(const void* pBuffer1, unsigned lenBuffer1,
const void* pBuffer2, unsigned lenBuffer2,
const void* pBuffer3, unsigned lenBuffer3,
char padCharacter = ' ');

Construct a string with contents from three buffers of arbitrary data (void*).

Destructor ˜IString();

 Diagnostics
These members provide IString diagnostic information for IString objects. Often, you use these

members to write trace information when debugging.

asDebugInfo Returns information about the IString’s internal representation that you can use for

debugging.

IString asDebugInfo() const;

asString Returns the string itself, so that IString supports this common IBase (p. 323)

protocol.

IString asString() const;

 Editing
Use these members to edit a string. All return a reference to the modified receiver. Many that

are length related, such as center and leftJustify, accept a pad character that defaults to a blank.

In all cases, you can specify argument strings as either objects of the IString class or by using

char*.

Static members by the same name can be applied to an IString to obtain the modified IString

without affecting the argument. For example:

aString.change('\t', ' '); // Changes all tabs in aString to 3 blanks.
IString s = IString::change(aString, '\t', ' '); // Leaves aString as is.

center Centers the receiver within a string of the specified length.

IString& center(unsigned length, char padCharacter = ' ');
static IString center(const IString& aString,

unsigned length, char padCharacter = ' ');

change Changes occurrences of a specified pattern to a specified replacement string. You

can specify the number of changes to perform. The default is to change all

occurrences of the pattern. You can also specify the position in the receiver at which

to begin.

The parameters are the following:

 IString 475

IString

inputString

The pattern string as a reference to an object of type IString. The library

searches for the pattern string within the receiver’s data.

pInputString

The pattern string as NULL-terminated string. The library searches for

the pattern string within the receiver’s data.

outputString

The replacement string as a reference to an object of type IString. It

replaces the occurrences of the pattern string in the receiver’s data.

pOutputString

The replacement string as a NULL-terminated string. It replaces the

occurrences of the pattern string in the receiver’s data.

startPos The position to start the search at within the receiver’s data. The default

is 1.

numChanges

The number of patterns to search for and change. The default is

UINT_MAX, which causes changes to all occurrences of the pattern.

static IString change(const IString& aString,
const char* pInputString, const char* pOutputString,
unsigned startPos = 1,
unsigned numChanges = (unsigned) UINT_MAX);

IString& change(const IString& inputString,
const IString& outputString, unsigned startPos = 1,
unsigned numChanges = (unsigned) UINT_MAX);

IString& change(const IString& inputString,
const char* pOutputString, unsigned startPos = 1,
unsigned numChanges = (unsigned) UINT_MAX);

IString& change(const char* pInputString,
const IString& outputString, unsigned startPos = 1,
unsigned numChanges = (unsigned) UINT_MAX);

IString& change(const char* pInputString,
const char* pOutputString, unsigned startPos = 1,
unsigned numChanges = (unsigned) UINT_MAX);

static IString change(const IString& aString,
const IString& inputString,
const IString& outputString,
unsigned startPos = 1,
unsigned numChanges = (unsigned) UINT_MAX);

476 VisualAge C++ Open Class Library Reference

IString

static IString change(const IString& aString,
const IString& inputString, const char* pOutputString,
unsigned startPos = 1, unsigned numChanges = (unsigned) UINT_MAX);

static IString change(const IString& aString,
const char* pInputString, const IString& outputString,
unsigned startPos = 1, unsigned numChanges = (unsigned) UINT_MAX);

copy Replaces the receiver’s contents with a specified number of replications of itself.

static IString copy(const IString& aString, unsigned numCopies);
IString& copy(unsigned numCopies);

insert Inserts the specified string after the specified location.

static IString insert(const IString& aString,
const char* pInsert, unsigned index = 0,
char padCharacter = ' ');

IString& insert(const IString& aString,
unsigned index = 0, char padCharacter = ' ');

IString& insert(const char* pString,
unsigned index = 0, char padCharacter = ' ');

static IString insert(const IString& aString,
const IString& anInsert, unsigned index = 0,
char padCharacter = ' ');

leftJustify Left-justifies the receiver in a string of the specified length. If the new length

(length) is larger than the current length, the string is extended by the pad character

(padCharacter). The default pad character is a blank.

static IString leftJustify(const IString& aString,
unsigned length, char padCharacter = ' ');

IString& leftJustify(unsigned length, char padCharacter = ' ');

lowerCase Translates all upper-case letters in the receiver to lower-case.

static IString lowerCase(const IString& aString);
IString& lowerCase();

overlayWith Replaces a specified portion of the receiver’s contents with the specified string. The

overlay starts in the receiver’s data at the index, which defaults to 1. If index is

beyond the end of the receiver’s data, it is padded with the pad character

(padCharacter).

 IString 477

IString

static IString overlayWith(const IString& aString,
const IString& anOverlay, unsigned index = 1,
char padCharacter = ' ');

IString& overlayWith(const IString& aString,
unsigned index = 1, char padCharacter = ' ');

IString& overlayWith(const char* pString,
unsigned index = 1, char padCharacter = ' ');

static IString overlayWith(const IString& aString,
const char* pOverlay, unsigned index = 1,
char padCharacter = ' ');

remove Deletes the specified portion of the string (that is, the substring) from the receiver.

You can use this function to truncate an IString object at a specific position. For

example:

aString.remove(8);

removes the substring beginning at index 8 and takes the rest of the string as a

default.

IString& remove(unsigned startPos, unsigned numChars);
IString& remove(unsigned startPos);
static IString remove(const IString& aString, unsigned startPos);
static IString remove(const IString& aString,

unsigned startPos, unsigned numChars);

reverse Reverses the receiver’s contents.

IString& reverse();
static IString reverse(const IString& aString);

rightJustify Right-justifies the receiver in a string of the specified length. If the receiver’s data

is shorter than the requested length (length), it is padded on the left with the pad

character (padCharacter). The default pad character is a blank.

static IString rightJustify(const IString& aString,
unsigned length, char padCharacter = ' ');

IString& rightJustify(unsigned length, char padCharacter = ' ');

strip Strips both leading and trailing character or characters. You can specify the

character or characters as the following:

¹ A single char

¹ A char* array

¹ An IString (p. 469) object

¹ An IStringTest (p. 515) object

478 VisualAge C++ Open Class Library Reference

IString

The default is white space.

IString& strip(const char* pString);
IString& strip();
IString& strip(char aCharacter);
IString& strip(const IString& aString);
IString& strip(const IStringTest& aTest);
static IString strip(const IString& aString, char aChar);
static IString strip(const IString& aString,

const IString& aStringOfChars);
static IString strip(const IString& aString,

const char* pStringOfChars);
static IString strip(const IString& aString,

const IStringTest& aTest);

stripBlanks Strips both leading and trailing white space.

Note: This function is the static version of IString::strip (p. 478), which has been

renamed to avoid a duplicate definition.

static IString stripBlanks(const IString& aString);

stripLeading Strips the leading character or characters.

static IString stripLeading(const IString& aString, char aChar);
IString& stripLeading();
IString& stripLeading(char aCharacter);
IString& stripLeading(const IString& aString);
IString& stripLeading(const char* pString);
IString& stripLeading(const IStringTest& aTest);
static IString stripLeading(const IString& aString,

const IString& aStringOfChars);
static IString stripLeading(const IString& aString,

const char* pStringOfChars);
static IString stripLeading(const IString& aString,

const IStringTest& aTest);

 stripLeadingBlanks

Strips the leading character or characters.

Note: This function is the static version of IString::stripLeading (p. 479), which has

been renamed to avoid a duplicate definition.

static IString stripLeadingBlanks(const IString& aString);

stripTrailing Strips the trailing character or characters.

static IString stripTrailing(const IString& aString,
const IStringTest& aTest);

IString& stripTrailing();
IString& stripTrailing(char aCharacter);
IString& stripTrailing(const IString& aString);
IString& stripTrailing(const char* pString);

 IString 479

IString

IString& stripTrailing(const IStringTest& aTest);
static IString stripTrailing(const IString& aString,
 char aChar);
static IString stripTrailing(const IString& aString,

const IString& aStringOfChars);
static IString stripTrailing(const IString& aString,

const char* pStringOfChars);

 stripTrailingBlanks

Strips the trailing character or characters.

Note: This function is the static version of IString::stripTrailing (p. 479), which has

been renamed to avoid a duplicate definition.

static IString stripTrailingBlanks(const IString& aString);

translate Converts all of the receiver’s characters that are in the first specified string to the

corresponding character in the second specified string.

static IString translate(const IString& aString,
const char* pInputChars, const IString& outputChars,
char padCharacter = ' ');

IString& translate(const IString& inputChars,
const IString& outputChars, char padCharacter = ' ');

IString& translate(const IString& inputChars,
const char* pOutputChars, char padCharacter = ' ');

IString& translate(const char* pInputChars,
const IString& outputChars, char padCharacter = ' ');

IString& translate(const char* pInputChars,
const char* pOutputChars, char padCharacter = ' ');

static IString translate(const IString& aString,
const IString& inputChars, const IString& outputChars,
char padCharacter = ' ');

static IString translate(const IString& aString,
const IString& inputChars, const char* pOutputChars,
char padCharacter = ' ');

static IString translate(const IString& aString,
const char* pInputChars, const char* pOutputChars,
char padCharacter = ' ');

upperCase Translates all lower-case letters in the receiver to upper-case.

IString& upperCase();
static IString upperCase(const IString& aString);

480 VisualAge C++ Open Class Library Reference

IString

 Forward Searches
These members permit searching a string in various ways. You can specify an optional index

that indicates the search start position. The default starts at the beginning of the string.

indexOf Returns the byte index of the first occurrence of the specified string within the

receiver. If there are no occurrences, 0 is returned. In addition to IStrings, you can

also specify a single character or an IStringTest (p. 515).

unsigned indexOf(const IString& aString,
unsigned startPos = 1) const;

unsigned indexOf(const char* pString, unsigned startPos = 1) const;
unsigned indexOf(char aCharacter, unsigned startPos = 1) const;
unsigned indexOf(const IStringTest& aTest,

unsigned startPos = 1) const;

 indexOfAnyBut

Returns the index of the first character of the receiver that is not in the specified set

of characters. If there are no characters, 0 is returned. Alternatively, this function

returns the index of the first character that fails the test prescribed by a specified

IStringTest (p. 515) object.

unsigned indexOfAnyBut(const IString& validChars,
unsigned startPos = 1) const;

unsigned indexOfAnyBut(const char* pValidChars,
unsigned startPos = 1) const;

unsigned indexOfAnyBut(char validChar, unsigned startPos = 1) const;

unsigned indexOfAnyBut(const IStringTest& aTest,
unsigned startPos = 1) const;

 indexOfAnyOf

Returns the index of the first character of the receiver that is a character in the

specified set of characters. If there are no characters, 0 is returned. Alternatively,

this function returns the index of the first character that passes the test prescribed by

a specified IStringTest (p. 515) object.

unsigned indexOfAnyOf(const char* pSearchChars,
unsigned startPos = 1) const;

unsigned indexOfAnyOf(const IString& searchChars,
unsigned startPos = 1) const;

unsigned indexOfAnyOf(char searchChar, unsigned startPos = 1) const;

unsigned indexOfAnyOf(const IStringTest& aTest,
unsigned startPos = 1) const;

 IString 481

IString

 occurrencesOf

Returns the number of occurrences of the specified IString, char*, char, or

IStringTest. If you just want a Boolean test, this is slower than IString::indexOf (p.

481).

unsigned occurrencesOf(const IStringTest& aTest,
unsigned startPos = 1) const;

unsigned occurrencesOf(const IString& aString,
unsigned startPos = 1) const;

unsigned occurrencesOf(const char* pString,
unsigned startPos = 1) const;

unsigned occurrencesOf(char aCharacter, unsigned startPos = 1) const;

 Hex Conversions
These members work if isHexDigits() == true; if not, they return a null string. The static

members by the same name can be applied to a string to return the modified string without

changing the argument string.

x2b Converts a string of hexadecimal digits to a string of binary digits. For example, this

function changes a1c to 101000011100 and f3 to 11110011.

IString& x2b();
static IString x2b(const IString& aString);

x2c Converts a string of hexadecimal digits to a normal string of characters. For

example, this function changes 8 to \x08 and 31393935 to 1995.

Note: This function is not locale sensitive.

static IString x2c(const IString& aString);
IString& x2c();

x2d Converts a string of hexadecimal digits to a string of decimal digits. For example,

this function changes a1c to 2588 and 10000 to 65536.

static IString x2d(const IString& aString);
IString& x2d();

 Manipulation
Use these members to manipulate a string's contents. All are overloaded so that standard C

strings can be used efficiently without constructing an equivalent String first.

operator & Performs bitwise AND. This function can handle the following three forms:

string1 & aString

Both operands are of type IString.

482 VisualAge C++ Open Class Library Reference

IString

string1 & pString

The first operand is an IString and the second is a NULL-terminated character

string.

pString & aString

The first operand is a NULL-terminated character string and the second is an

IString.

IString operator &(const char* pString) const;
IString operator &(const IString& aString) const;

operator &= Performs bitwise AND and replaces the receiver. This function can handle the

following two forms:

string1 &= aString

Both operands are of type IString.

string1 &= pString

The first operand is an IString and the second is a NULL-terminated character

string.

IString& operator &=(const char* pString);
IString& operator &=(const IString& aString);

operator + Concatenates two strings. This function can handle the following three forms:

string1 + aString

Both operands are of type IString.

string1 + pString

The first operand is an IString and the second is a NULL-terminated character

string.

pString + aString

The first operand is a NULL-terminated character string and the second is an

IString.

IString operator +(const IString& aString) const;
IString operator +(const char* pString) const;

operator += Concatenates the specified string to the receiver and replaces the receiver. This

function can handle the following two forms:

string1 += aString

Both operands are of type IString.

string1 += pString

The first operand is an IString and the second is a NULL-terminated character

string.

 IString 483

IString

IString& operator +=(const char* pString);
IString& operator +=(const IString& aString);

operator = Replaces the contents of the string.

IString& operator =(const IString& aString);

 operator ‸

Performs bitwise XOR. This function can handle the following three forms:

string1 ‸ aString

Both operands are of type IString.

string1 ‸ pString

The first operand is an IString and the second is a NULL-terminated character

string.

pString ‸ aString

The first operand is a NULL-terminated character string and the second is an

IString.

IString operator ‸(const char* pString) const;
IString operator ‸(const IString& aString) const;

 operator ‸=

Performs bitwise XOR and replaces the receiver. This function can handle the

following two forms:

string1 ‸= aString

Both operands are of type IString.

string1 ‸= pString

The first operand is an IString and the second is a NULL-terminated character

string.

IString& operator ‸=(const IString& aString);
IString& operator ‸=(const char* pString);

operator | Performs bitwise OR. This function can handle the following three forms:

string1 | aString

Both operands are of type IString.

string1 | pString

The first operand is an IString and the second is a NULL-terminated character

string.

pString | aString

The first operand is a NULL-terminated character string and the second is an

IString.

484 VisualAge C++ Open Class Library Reference

IString

IString operator |(const char* pString) const;
IString operator |(const IString& aString) const;

 operator |=

Performs bitwise OR and replaces the receiver with the resulting string. This function

can handle the following two forms:

string1 |= aString

Both operands are of type IString.

string1 |= pString

The first operand is an IString and the second is a NULL-terminated character

string.

IString& operator |=(const IString& aString);
IString& operator |=(const char* pString);

operator ˜ Returns the string’s bitwise negation (the string’s complement).

IString operator ˜() const;

 NLS Testing
Use these members to test the characters that comprise a string. Basically, you use these

members to determine if an IString contains only characters from a specific NLS character set

(SBCS, MBCS, DBCS).

 includesDBCS

If any characters are DBCS (double-byte character set), true is returned.

Note: This function is interchangeable with includesMBCS.

Boolean includesDBCS() const;

 includesMBCS

If any characters are MBCS (multiple-byte character set), true is returned.

Note: This function is interchangeable with includesDBCS.

Boolean includesMBCS() const;

 includesSBCS

If any characters are SBCS (single-byte character set), true is returned.

Boolean includesSBCS() const;

isDBCS If all the characters are DBCS, true is returned.

Note: This function is interchangeable with isMBCS.

Boolean isDBCS() const;

 IString 485

IString

isMBCS If all the characters are MBCS, true is returned.

Note: This function is interchangeable with isDBCS.

Boolean isMBCS() const;

isSBCS If all the characters are SBCS, true is returned.

Boolean isSBCS() const;

isValidDBCS If no DBCS characters have a 0 second byte, true is returned.

Note: This function is interchangeable with isValidMBCS.

Boolean isValidDBCS() const;

isValidMBCS If no MBCS characters have a 0 second byte, true is returned.

Note: This function is interchangeable with isValidDBCS.

Boolean isValidMBCS() const;

 Numeric Conversions
These members work if isDigits() == true; if not, they return a null string. The static members by

the same name can be applied to a string to return the modified string without changing the

argument string.

d2b Converts a string of decimal digits to a string of binary digits. This function builds

the string eight bits at a time. For example,

'12' gets converted to '00001100'
'17' gets converted to '00010001'
'123' gets converted to '01111011'

Use stripLeading('0') to strip the leading zeros.

IString& d2b();
static IString d2b(const IString& aString);

d2c Converts a string of decimal digits to a normal string of characters. For example,

this function changes 12 to \x0c and 56 to 8.

Note: This function is not locale sensitive.

static IString d2c(const IString& aString);
IString& d2c();

d2x Converts a string of decimal digits to a string of hexadecimal digits. For example,

this function changes 12 to c and 123 to 7b.

static IString d2x(const IString& aString);
IString& d2x();

486 VisualAge C++ Open Class Library Reference

IString

 Pattern Matching
Use these members to determine if an object of this class contains a given pattern of characters.

includes If the receiver contains the specified search string, true is returned.

Boolean includes(const IStringTest& aTest) const;
Boolean includes(const IString& aString) const;
Boolean includes(const char* pString) const;
Boolean includes(char aChar) const;

 isAbbreviationFor

If the receiver is a valid abbreviation of the specified string, true is returned.

The parameters are the following:

fullString The full string for the abbreviation check is contained in another IString.

pFullString

The full string for the abbreviation check is a NULL-terminated character

string.

minAbbrevLength

The minimum length to match for it to be a valid abbreviation. The

default minimum length is 0, which means the minimum length is the

length of the receiver’s string.

Boolean isAbbreviationFor(const char* pFullString,
unsigned minAbbrevLength = 0) const;

Boolean isAbbreviationFor(const IString& fullString,
unsigned minAbbrevLength = 0) const;

isLike If the receiver matches the specified pattern, which can contain wildcard characters,

true is returned.

¹ You can use the first wildcard character to specify that 0 or more arbitrary

characters are accepted. The default wildcard character that does this is *, but

you can specify another character when calling IString::isLike. For example:

IString("Allison").isLike("Al*ison") -> true

¹ You can use the second wildcard character to specify that a single arbitrary

character is accepted. The default wildcard character that does this is ?, but you

can specify another character when calling IString::isLike. For example:

IString("istring7.cpp").isLike("i*.?pp") -> true
IString("Not a question!").isLike("*?", '*', '-') -> false

 IString 487

IString

Boolean isLike(const char* pPattern,
char zeroOrMore = ' * ', char anyChar = '?') const;

Boolean isLike(const IString& aPattern,
char zeroOrMore = ' * ', char anyChar = '?') const;

 Queries
Use these members to access general information about the string.

charType Returns the type of the character at the specified index.

IStringEnum::CharType charType(unsigned index) const;

length Returns the length of the string, not counting the terminating NULL character.

unsigned length() const;

operator [] Returns a reference to the specified character of the string.

Note: If you call the non-const version of this function with an index beyond the

end, the function extends the string.

1 const char& operator [](unsigned index) const;

 Exception

IInvalidRequest. Passed an index larger than the string size. Possible causes include

boundary errors and using this function instead of the non-const version which grows

the underlying IString buffer to accommodate the index value.

2 char& operator [](unsigned index);

size Returns the length of the string, not counting the terminating NULL character.

unsigned size() const;

subString Returns a specified portion of the string (that is, the substring) of the receiver.

The parameters are the following:

startPos The starting position of the substring being extracted. If this position is

beyond the end of the data in the receiver, this function returns a NULL

IString.

length The length of the substring to be extracted. If the length extends beyond

the end of the receiver’s data, the returned IString is padded to the

specified length with padCharacter. If you do not specify length and it

defaults, this function uses the rest of the receiver’s data starting from

startPos for padding.

488 VisualAge C++ Open Class Library Reference

IString

padCharacter

The character the function uses as padding if the requested length extends

beyond the end of the receiver’s data. The default padCharacter is a

blank.

You can use this function to truncate an IString object at a specific position. For

example:

aString = aString.subString(1, 7);

returns the substring concluding with index 7 and discards the rest of the string.

IString subString(unsigned startPos) const;
IString subString(unsigned startPos,

unsigned length, char padCharacter = ' ') const;

 Reverse Searches
These members permit searching the string in various ways. The lastIndexOf versions

correspond to forward search indexOf members but start the search from the end of the string.

These members return the index of the last character in the receiver IString that satisfies the

search criteria. Also, they accept an optional argument that specifies where the search is to

begin. The default is to start searching at the end of the string. Searching proceeds from right to

left for these members.

lastIndexOf Returns the index of the last occurrence of the specified string or character. The

search starts at the position specified by startPos (inclusive) and proceeds backward.

The returned value is in the range 0 <= x <= startPos. The default of UINT_MAX

starts the search at the end of the receiver’s string. If the search target is not found, 0

is returned.

If you specify 1 for startPos, the search starts at the beginning of the string.

Therefore, because the search proceeds backward from its starting position, in this

case the search target must occur at the beginning of the string for it to be found.

unsigned lastIndexOf(const char* pString,
unsigned startPos = (unsigned) UINT_MAX) const;

unsigned lastIndexOf(const IString& aString,
unsigned startPos = (unsigned) UINT_MAX) const;

unsigned lastIndexOf(char aCharacter,
unsigned startPos = (unsigned) UINT_MAX) const;

unsigned lastIndexOf(const IStringTest& aTest,
unsigned startPos = (unsigned) UINT_MAX) const;

 lastIndexOfAnyBut

Returns the index of the last character not in the specified string or character. The

search starts at the position specified by startPos (inclusive) and proceeds backward.

 IString 489

IString

The default of UINT_MAX starts the search at the end of the receiver’s string. If the

search target is not found, 0 is returned.

If you specify 1 for startPos, the search starts at the beginning of the string.

Therefore, because the search proceeds backward from its starting position, in this

case the search target must occur at the beginning of the string for it to be found.

unsigned lastIndexOfAnyBut(const IString& validChars,
unsigned startPos = (unsigned) UINT_MAX) const;

unsigned lastIndexOfAnyBut(const char* pValidChars,
unsigned startPos = (unsigned) UINT_MAX) const;

unsigned lastIndexOfAnyBut(char validChar,
unsigned startPos = (unsigned) UINT_MAX) const;

unsigned lastIndexOfAnyBut(const IStringTest& aTest,
unsigned startPos = (unsigned) UINT_MAX) const;

 lastIndexOfAnyOf

Returns the index of the last character in the specified string or character. The search

starts at the position specified by startPos (inclusive) and proceeds backward. The

default of UINT_MAX starts the search at the end of the receiver’s string. If the

search target is not found, 0 is returned.

If you specify 1 for startPos, the search starts at the beginning of the string.

Therefore, because the search proceeds backward from its starting position, in this

case the search target must occur at the beginning of the string for it to be found.

unsigned lastIndexOfAnyOf(const char* pSearchChars,
unsigned startPos = (unsigned) UINT_MAX) const;

unsigned lastIndexOfAnyOf(const IString& searchChars,
unsigned startPos = (unsigned) UINT_MAX) const;

unsigned lastIndexOfAnyOf(char searchChar,
unsigned startPos = (unsigned) UINT_MAX) const;

unsigned lastIndexOfAnyOf(const IStringTest& aTest,
unsigned startPos = (unsigned) UINT_MAX) const;

 Stream Input
Use these members to read IStrings from standard C++ streams.

lineFrom Returns the next line from the specified input stream. This static function accepts

an optional line delimiter, which defaults to \n. The resulting IString contains the

characters up to the next occurrence of the delimiter. The delimiter character is

skipped. If an EOF condition occurs, this function returns an IString whose contents

are NULL.

490 VisualAge C++ Open Class Library Reference

IString

static IString lineFrom(istream& aStream, char delim = '\n');

 Testing
Use these members to determine if an IString contains only characters from a predefined set.

isAlphabetic If all the characters are in {'A'-'Z','a'-'z'}, true is returned.

Boolean isAlphabetic() const;

 isAlphanumeric

If all the characters are in {'A'-'Z','a'-'z','0'-'9'}, true is returned.

Boolean isAlphanumeric() const;

isASCII If all the characters are in {0x00-0x7F}, true is returned.

Boolean isASCII() const;

 isBinaryDigits

If all the characters are either 0 or 1, true is returned.

Boolean isBinaryDigits() const;

isControl Returns true if all the characters are control characters. Control characters are

determined using the iscntrl() C Library function defined in the cntrl locale source file

and in the cntrl class of the LC_CTYPE category of the current locale. For example,

on ASCII operating systems, control characters are those in the range

{0x00-0x1F,0x7F}.

Boolean isControl() const;

isDigits If all the characters are in {'0'-'9'}, true is returned.

Boolean isDigits() const;

isGraphics Returns true if all the characters are graphics characters.

Graphics characters are printable characters excluding the space character, as defined

by the isgraph() C Library function in the graph locale source file and in the graph

class of the LC_CTYPE category of the current locale. On ASCII systems, for

example, graphics characters are those in the range {0x21-0x7E}.

Boolean isGraphics() const;

isHexDigits If all the characters are in {'0'-'9','A'-'F','a'-'f'}, true is returned.

Boolean isHexDigits() const;

isLowerCase If all the characters are in {'a'-'z'}, true is returned.

Boolean isLowerCase() const;

 IString 491

IString

isPrintable Returns true if all the characters are printable characters. Printable characters are

defined by the isprint() C Library function as defined in the print locale source file

and in the print class of the LC_CTYPE category of the current locale. On ASCII

systems, for example, printable characters are those in the range {0x20-0x7E}.

Boolean isPrintable() const;

 isPunctuation

If none of the characters is white space, a control character, or an alphanumeric

character, true is returned.

Boolean isPunctuation() const;

isUpperCase If all the characters are in {'A'-'Z'}, true is returned.

Boolean isUpperCase() const;

 isWhiteSpace

Returns true if all the characters are whitespace characters. Whitespace characters are

defined by the isspace() C Library function as defined in the space locale source file

and in the space class of the LC_CTYPE category of the current locale. For

example, on ASCII systems, whitespace characters are those in the range

{0x09-0x0D,0x20}.

Boolean isWhiteSpace() const;

 Type Conversions
Use these members to convert a string to various other data types. The types supported are the

same set as are supported by the IString constructors.

asDouble Returns, as a double, the number that the string represents.

double asDouble() const;

asInt Returns the number that the string represents as a long integer.

Note: If an IString contains nonnumeric characters, this function returns the integer

for the portion of the IString up to, but not including, the nonnumeric

character. The rest of the IString, following the invalid character, is not

returned.

If an IString is larger than the maximum integer, this function returns the

maximum integer, not the larger value.

long asInt() const;

asUnsigned Returns, as an unsigned long, the integer that the string represents.

unsigned long asUnsigned() const;

492 VisualAge C++ Open Class Library Reference

IString

operator char *

Returns a char* pointer to the string’s contents.

operator char *() const;

operator signed char *

Returns a signed char* pointer to the string’s contents.

operator signed char *() const;

operator unsigned char *

Returns an unsigned char* pointer to the string’s contents.

operator unsigned char *() const;

 Word Operations
These members operate on a string as a collection of words separated by whitespace characters.

They find, remove, and count words or phrases.

 indexOfPhrase

Returns the position of the first occurrence of the specified phrase in the receiver. If

the phrase is not found, 0 is returned.

unsigned indexOfPhrase(const IString& wordString,
unsigned startWord = 1) const;

indexOfWord Returns the index of the specified white-space-delimited word in the receiver. If the

word is not found, 0 is returned.

unsigned indexOfWord(unsigned wordNumber) const;

 lengthOfWord

Returns the length of the specified white-space-delimited word in the receiver.

unsigned lengthOfWord(unsigned wordNumber) const;

numWords Returns the number of words in the receiver.

unsigned numWords() const;

 removeWords

Deletes the specified words from the receiver’s contents. You can specify the words

by using a starting word number and the number of words. The latter defaults to the

rest of the string.

Note: The static functions IString::space (p. 494) and IString::removeWords obtain

the same result but do not affect the String to which they are applied.

 IString 493

IString

IString& removeWords(unsigned firstWord);

IString& removeWords(unsigned firstWord, unsigned numWords);

static IString removeWords(const IString& aString,
 unsigned startWord);

static IString removeWords(const IString& aString,
unsigned startWord, unsigned numWords);

space Modifies the receiver so that all words are separated by the specified number of

blanks. The default is one blank. All white space is converted to simple blanks.

Note: The static functions IString::space and IString::removeWords (p. 493) obtain

the same result but do not affect the String to which they are applied.

static IString space(const IString& aString,
unsigned numSpaces = 1, char spaceChar = ' ');

IString& space(unsigned numSpaces = 1, char spaceChar = ' ');

word Returns a copy of the specified white-space-delimited word in the receiver.

IString word(unsigned wordNumber) const;

 wordIndexOfPhrase

Returns the word number of the first word in the receiver that matches the specified

phrase. The function starts its search with the word number you specify in startWord,

which defaults to 1. If the phrase is not found, 0 is returned.

unsigned wordIndexOfPhrase(const IString& aPhrase,
unsigned startWord = 1) const;

words Returns a substring of the receiver that starts at a specified word and is comprised of

a specified number of words. The word separators are copied to the result intact.

IString words(unsigned firstWord, unsigned numWords) const;
IString words(unsigned firstWord) const;

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

494 VisualAge C++ Open Class Library Reference

IString

 Protected Functions

 Bit Operations
Use these members to implement various public members of this class requiring bitwise

operations.

applyBitOp Implements the bitwise operators &, |, and ‸.

IString& applyBitOp(const char* pArg,
unsigned argLen, BitOperator op);

 Editing
Use these members to edit a string. All return a reference to the modified receiver. Many that

are length related, such as center and leftJustify, accept a pad character that defaults to a blank.

In all cases, you can specify argument strings as either objects of the IString class or by using

char*.

Static members by the same name can be applied to an IString to obtain the modified IString

without affecting the argument. For example:

aString.change('\t', ' '); // Changes all tabs in aString to 3 blanks.
IString s = IString::change(aString, '\t', ' '); // Leaves aString as is.

change Changes occurrences of a specified pattern to a specified replacement string. You

can specify the number of changes to perform. The default is to change all

occurrences of the pattern. You can also specify the position in the receiver at which

to begin.

The parameters are the following:

inputString

The pattern string as a reference to an object of type IString. The library

searches for the pattern string within the receiver’s data.

pInputString

The pattern string as NULL-terminated string. The library searches for

the pattern string within the receiver’s data.

outputString

The replacement string as a reference to an object of type IString. It

replaces the occurrences of the pattern string in the receiver’s data.

pOutputString

The replacement string as a NULL-terminated string. It replaces the

occurrences of the pattern string in the receiver’s data.

 IString 495

IString

startPos The position to start the search at within the receiver’s data. The default

is 1.

numChanges

The number of patterns to search for and change. The default is

UINT_MAX, which causes changes to all occurrences of the pattern.

IString& change(const char* pPattern, unsigned patternLen,
const char* pReplacement, unsigned replacementLen,
unsigned startPos, unsigned numChanges);

insert Inserts the specified string after the specified location.

IString& insert(const char* pInsert, unsigned insertLen,
unsigned startPos, char padCharacter);

overlayWith Replaces a specified portion of the receiver’s contents with the specified string. The

overlay starts in the receiver’s data at the index, which defaults to 1. If index is

beyond the end of the receiver’s data, it is padded with the pad character

(padCharacter).

IString& overlayWith(const char* pOverlay,
unsigned overlayLen, unsigned index,

 char padCharacter);

strip Strips both leading and trailing character or characters. You can specify the

character or characters as the following:

¹ A single char

¹ A char* array

¹ An IString (p. 469) object

¹ An IStringTest (p. 515) object

The default is white space.

IString& strip(const char* p, unsigned len,
 IStringEnum::StripMode mode);

IString& strip(const IStringTest& aTest,
 IStringEnum::StripMode mode);

translate Converts all of the receiver’s characters that are in the first specified string to the

corresponding character in the second specified string.

IString& translate(const char* pInputChars,
unsigned inputLen, const char* pOutputChars,
unsigned outputLen, char padCharacter);

496 VisualAge C++ Open Class Library Reference

IString

 Forward Searches
These members permit searching a string in various ways. You can specify an optional index

that indicates the search start position. The default starts at the beginning of the string.

findPhrase Locates a specified string of words for indexOfWord functions.

unsigned findPhrase(const IString& aPhrase,
unsigned startWord, IndexType charOrWord) const;

indexOfWord Returns the index of the specified white-space-delimited word in the receiver. If the

word is not found, 0 is returned.

unsigned indexOfWord(unsigned wordNumber,
unsigned startPos, unsigned numWords) const;

occurrencesOf

Returns the number of occurrences of the specified IString, char*, char, or

IStringTest. If you just want a Boolean test, this is slower than IString::indexOf (p.

481).

unsigned occurrencesOf(const char* pSearchString,
unsigned searchLen, unsigned startPos) const;

 Implementation
Use these members to implement this class; specifically, they initialize or set the underlying

IBuffer data.

initBuffer Resets the contents from a specified buffer or buffers.

IString& initBuffer(double d);

IString& initBuffer(const void* p1, unsigned len1,
const void* p2 = 0, unsigned len2 = 0,
const void* p3 = 0, unsigned len3 = 0,
char padChar = 0);

IString& initBuffer(long n);

IString& initBuffer(unsigned long n);

setBuffer Sets the private data member to point to a new IBuffer (p. 333) object.

IString& setBuffer(IBuffer* ibuff);

 Queries
Use these members to access general information about the string.

buffer Returns the address of the IBuffer (p. 333) referred to by this IString.

IBuffer* buffer() const;

 IString 497

IString

data Returns the address of the contents of the IString.

char* data() const;

defaultBuffer Returns a pointer to the contents of the nullBuffer data member.

static char* defaultBuffer();

lengthOf Returns the length of a C character array.

static unsigned lengthOf(const char* p);

 Testing
Use these members to determine if an IString contains only characters from a predefined set.

isAbbrevFor If the receiver is a valid abbreviation of the specified string, true is returned.

The parameters are the following:

pFullString

The full string for the abbreviation check. The string can be either a

NULL-terminated character string or not.

fullLen The full length of the specified pFullString minus the null terminator.

minLen The minimum length to match for it to be a valid abbreviation. If you

specify 0, the minimum length is the length of the receiver’s string.

Boolean isAbbrevFor(const char* pFullString,
unsigned fullLen, unsigned minLen) const;

isLike If the receiver matches the specified pattern, which can contain wildcard characters,

true is returned.

¹ You can use the first wildcard character to specify that 0 or more arbitrary

characters are accepted. The default wildcard character that does this is *, but

you can specify another character when calling IString::isLike. For example:

IString("Allison").isLike("Al*ison") -> true

¹ You can use the second wildcard character to specify that a single arbitrary

character is accepted. The default wildcard character that does this is ?, but you

can specify another character when calling IString::isLike. For example:

IString("istring7.cpp").isLike("i*.?pp") -> true
IString("Not a question!").isLike("*?", '*', '-') -> false

Boolean isLike(const char* pPattern,
unsigned patternLen, char zeroOrMore,
char anyChar) const;

498 VisualAge C++ Open Class Library Reference

IString

 Protected Data

 Utility Data
These protected static data members provide useful values for implementing IString. IString uses

the various representation of null and zero for initialization and comparison purposes.

maxLong The maximum value of a long, with 32-bit unsigned long integers.

static const char *maxLong;

PM This value is "2147483647" on OS/2 with 32-bit unsigned long integers.

null A string that contains no element.

static const char *null;

nullBuffer A pointer to the null buffer's contents.

static char *nullBuffer;

zero The number 0.

static const char *zero;

Inherited Protected Data

IBase

recoverable unrecoverable

Nested Type Definitions

BitOperator typedef enum { and , or , exclusiveOr } BitOperator;

Use these enumerators to specify the bit operator to apply to the applyBitOp function.

Valid bit operators are as follows:

 ¹ and

 ¹ or

 ¹ exclusiveOr

IndexType typedef enum { charIndex , wordIndex } IndexType;

These enumerators specify whether the result from the findPhrase function is a word

index or a character index:

 IString 499

IString

charIndex

Returns the result as the byte index within the string

wordIndex

Returns the result as the index of the matching word. For example, the first

word is 1, the second word is 2, and so forth.

Related Enumeration

 BitOperator

500 VisualAge C++ Open Class Library Reference

IStringEnum

IStringEnum

Derivation Inherits from none.

Inherited By None.

Header File istrenum.hpp

The IStringEnum class serves as a repository for enumeration types related to the

IString class. The library places these enumeration types here so they can easily be

shared between code that implements the classes IString (p. 469), IBuffer (p. 333),

and IDBCSBuffer (p. 361).

Nested Type Definitions

CharType typedef enum { sbcs , dbcs1 = 1 , mbcs1 = 1 , dbcs2 = 2 ,
mbcs2 = 2 , mbcs3 = 3 , mbcs4 = 4 } CharType;

These enumerators specify the various types of characters that comprise an IString:

sbcs

The IString contains single-byte character set (SBCS) characters.

dbcs1

The IString contains the first byte of a double-byte character support (DBCS)

character.

dbcs2

The IString contains the second byte of a double-byte character support (DBCS)

character.

StripMode typedef enum { leading , trailing , both } StripMode;

Enumeration that defines the mode of various functions that strip leading characters,

trailing characters, or both from IStrings.

Related Enumeration

 CharType

 Copyright IBM Corp. 1993, 1995 501

IStringEnum

502 VisualAge C++ Open Class Library Reference

IStringParser

IStringParser

Derivation IBase

 IStringParser

Inherited By None.

Header File istparse.hpp

Members Member Page Member Page

Constructor 512 operator >> 505

operator << 504 ˜IStringParser 506

Objects of this class enable you to parse the content of an IString (p. 469) and place

portions of the string into other strings. You can limit the parsing of a string by

specifying the following:

¹ Patterns that must be matched

¹ Relative or absolute column numbers

This class’s functions work much like the REXX parse statement.

Typically, you create IStringParser objects implicitly by applying the right-shift

operator to an IString. IStringParser also provides the right-shift operator as a

member function so you can chain together invocations of the operator. For example,

a typical expression using IStringParser objects might look like the following:

aFileName >> drive >> ':' >> path;

The right-shift operator does one of four things, depending on the type of the

right-hand operand:

IString The string parser object sets this string to the next token from the text

being parsed.

pattern The parser advances to the next character beyond the occurrence of that

pattern in its text. The pattern can be any of the following:

const char*

Searches for the sequence of characters described by the

character array.

 Copyright IBM Corp. 1993, 1995 503

IStringParser

const IString

Searches for the sequence of characters described by the string.

Note that the treatment of a const IString is fundamentally

different from the treatment of a non-const IString.

char Searches for the next occurrence of the specified character.

IStringTest

Searches for the next character in the text for which the string

test object returns true.

number The current parser text position is adjusted by the specified amount. The

value can be positive or negative.

special IStringParser defines special right-shift operands that perform the following

special-purpose parser operations:

IStringParser::reset This enumerator resets the parser text position to

1.

IStringParser::skip This enumerator skips one token in the text. It is

equivalent to >> temp, where temp is a temporary

IString that is discarded. This is equivalent to

using '.' in REXX.

IStringParser::Skip An object of this class skips a given number of

tokens.

You can also use the left-shift operator with an unsigned numeric parameter. This

repositions the parser object to the specified column. Note that the parameter is not

relative as it is in the case of the right-shift operator. Instead, it is an absolute

column position.

 Public Functions

Absolute Column Positioning
Use these members to reset the parser text position to an absolute column number.

operator << Changes the parser text position to an absolute column number. This is a left-shift

operator.

IStringParser& operator <<(unsigned long position);

 Commands
Use these members to permit special-purpose parsing techniques. They allow you to handle

special commands and to skip objects.

504 VisualAge C++ Open Class Library Reference

IStringParser

operator >> Parses the text string. The right-shift operator is the primary function for parsing

the text string. The library overloads this function so you can specify how you want

the text string parsed via the type of parameter accepted by a particular overload.

1 IStringParser& operator >>(const SkipWords& skipObject);

Skips the next n words in the parser text, where n is the number of words specified

when constructing the IStringParser::SkipWords (p. 513) object.

2 IStringParser& operator >>(Command command);

Resets the parser text position as follows:

¹ To the beginning of the text

¹ To skip the next token in the parser text

Use the enumeration IStringParser::Command (p. 512) to specify the parsing token.

3 IStringParser& operator >>(IString& token);

Parses the next token from the object into the IString object. This parameter places

the rest of the parser text into the IString object. When the parser encounters a

subsequent parsing instruction, it adjusts the token placed into the string. For

example:

token1 token2 >> token1 // token1 == "token1 token2" at this point
>> token2; // token2 == token2 and

 // token1 == token1.

4 IStringParser& operator >>(const IString& pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

5 IStringParser& operator >>(const char* pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

6 IStringParser& operator >>(char pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

7 IStringParser& operator >>(const IStringTest& test);

Applies the IStringTest object to the parser text and moves the parser text position to

the next character that satisfies the string test. If the string test is not satisfied, the

parser moves the position off the end of the parser text.

8 IStringParser& operator >>(int delta);

Moves the parser text position relative to the current parser text position. For

example:

"1234" >> token1 >> 1 >> token2 >> 2 >> token3;

 IStringParser 505

IStringParser

results in:

token1 == "1"
token2 == "23"
token3 == "4"

9 IStringParser& operator >>(unsigned long delta);

Moves the parser text position relative to the current parser text position. For

example:

"1234" >> token1 >> 1 >> token2 >> 2 >> token3;

results in:

token1 == "1"
token2 == "23"
token3 == "4"

Constructor and Destructor
The destructor member is the default. The constructor members are protected to prevent you

from creating objects except via use of the shift operators.

You can construct a string parser object by providing:

¹ a string that defines the text to be parsed

¹ an existing parser object (copy constructor)

Note that usually you will construct parser objects by applying the right-shift operator to a string.

The constructor is protected to prevent you from creating objects except via use of those

operators. Creation is prevented because of the nature of string parser objects. Since they hold

references to operands, it is unwise to permit the objects to persist beyond the scope of those

operands.

Destructor ˜IStringParser();

Destructor, decrements reference count.

 Pattern Matching
Use these members to advance to the next occurrence of the argument pattern in the parser text.

Upon return, the parser is positioned at the next character beyond the text that matched the

pattern. If the pattern is not found, the parser is positioned off the end of the text. Note that

when using an IString as a pattern, you should cast it to a const IString reference.

operator >> Parses the text string. The right-shift operator is the primary function for parsing

the text string. The library overloads this function so you can specify how you want

the text string parsed via the type of parameter accepted by a particular overload.

1 IStringParser& operator >>(const IStringTest& test);

506 VisualAge C++ Open Class Library Reference

IStringParser

Applies the IStringTest object to the parser text and moves the parser text position to

the next character that satisfies the string test. If the string test is not satisfied, the

parser moves the position off the end of the parser text.

2 IStringParser& operator >>(Command command);

Resets the parser text position as follows:

¹ To the beginning of the text

¹ To skip the next token in the parser text

Use the enumeration IStringParser::Command (p. 512) to specify the parsing token.

3 IStringParser& operator >>(const SkipWords& skipObject);

Skips the next n words in the parser text, where n is the number of words specified

when constructing the IStringParser::SkipWords (p. 513) object.

4 IStringParser& operator >>(IString& token);

Parses the next token from the object into the IString object. This parameter places

the rest of the parser text into the IString object. When the parser encounters a

subsequent parsing instruction, it adjusts the token placed into the string. For

example:

token1 token2 >> token1 // token1 == "token1 token2" at this point
>> token2; // token2 == token2 and

 // token1 == token1.

5 IStringParser& operator >>(const IString& pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

6 IStringParser& operator >>(const char* pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

7 IStringParser& operator >>(char pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

8 IStringParser& operator >>(int delta);

Moves the parser text position relative to the current parser text position. For

example:

"1234" >> token1 >> 1 >> token2 >> 2 >> token3;

results in:

token1 == "1"
token2 == "23"
token3 == "4"

9 IStringParser& operator >>(unsigned long delta);

 IStringParser 507

IStringParser

Moves the parser text position relative to the current parser text position. For

example:

"1234" >> token1 >> 1 >> token2 >> 2 >> token3;

results in:

token1 == "1"
token2 == "23"
token3 == "4"

Relative Column Positioning
Use these members to move the parser text position relative to its current position. A negative

argument moves backward; a positive argument moves forward. The adjustment is made starting

at the point at which the prior parsing instruction started.

For example:

"1234" >> token1 >> 1 >> token2 >> 2 >> token3;

will result in:

token1 == "1"

token2 == "23"

token3 == "4".

operator >> Parses the text string. The right-shift operator is the primary function for parsing

the text string. The library overloads this function so you can specify how you want

the text string parsed via the type of parameter accepted by a particular overload.

1 IStringParser& operator >>(unsigned long delta);

Moves the parser text position relative to the current parser text position. For

example:

"1234" >> token1 >> 1 >> token2 >> 2 >> token3;

results in:

token1 == "1"
token2 == "23"
token3 == "4"

2 IStringParser& operator >>(Command command);

Resets the parser text position as follows:

¹ To the beginning of the text

¹ To skip the next token in the parser text

Use the enumeration IStringParser::Command (p. 512) to specify the parsing token.

3 IStringParser& operator >>(const SkipWords& skipObject);

508 VisualAge C++ Open Class Library Reference

IStringParser

Skips the next n words in the parser text, where n is the number of words specified

when constructing the IStringParser::SkipWords (p. 513) object.

4 IStringParser& operator >>(IString& token);

Parses the next token from the object into the IString object. This parameter places

the rest of the parser text into the IString object. When the parser encounters a

subsequent parsing instruction, it adjusts the token placed into the string. For

example:

token1 token2 >> token1 // token1 == "token1 token2" at this point
>> token2; // token2 == token2 and

 // token1 == token1.

5 IStringParser& operator >>(const IString& pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

6 IStringParser& operator >>(const char* pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

7 IStringParser& operator >>(char pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

8 IStringParser& operator >>(const IStringTest& test);

Applies the IStringTest object to the parser text and moves the parser text position to

the next character that satisfies the string test. If the string test is not satisfied, the

parser moves the position off the end of the parser text.

9 IStringParser& operator >>(int delta);

Moves the parser text position relative to the current parser text position. For

example:

"1234" >> token1 >> 1 >> token2 >> 2 >> token3;

results in:

token1 == "1"
token2 == "23"
token3 == "4"

 Tokens
Use these members to parse the next token from the parser object and place it into the IString

operand. By necessity, these members place the rest of the parser text into the string. When the

parser encounters a subsequent parsing instruction, it goes back and adjusts the token placed into

the string.

For example:

 IStringParser 509

IStringParser

"token1 token2" >> token1 // token1 == token1 token2 at this point
>> token2; // token2 == "token2" and

// token1 == "token1".

operator >> Parses the text string. The right-shift operator is the primary function for parsing

the text string. The library overloads this function so you can specify how you want

the text string parsed via the type of parameter accepted by a particular overload.

1 IStringParser& operator >>(IString& token);

Parses the next token from the object into the IString object. This parameter places

the rest of the parser text into the IString object. When the parser encounters a

subsequent parsing instruction, it adjusts the token placed into the string. For

example:

token1 token2 >> token1 // token1 == "token1 token2" at this point
>> token2; // token2 == token2 and

 // token1 == token1.

2 IStringParser& operator >>(Command command);

Resets the parser text position as follows:

¹ To the beginning of the text

¹ To skip the next token in the parser text

Use the enumeration IStringParser::Command (p. 512) to specify the parsing token.

3 IStringParser& operator >>(const SkipWords& skipObject);

Skips the next n words in the parser text, where n is the number of words specified

when constructing the IStringParser::SkipWords (p. 513) object.

4 IStringParser& operator >>(const IString& pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

5 IStringParser& operator >>(const char* pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

6 IStringParser& operator >>(char pattern);

Finds a matching pattern within the parser text and moves the parser text position. If

the pattern is not found, the parser moves the position off the end of the parser text.

7 IStringParser& operator >>(const IStringTest& test);

Applies the IStringTest object to the parser text and moves the parser text position to

the next character that satisfies the string test. If the string test is not satisfied, the

parser moves the position off the end of the parser text.

8 IStringParser& operator >>(int delta);

510 VisualAge C++ Open Class Library Reference

IStringParser

Moves the parser text position relative to the current parser text position. For

example:

"1234" >> token1 >> 1 >> token2 >> 2 >> token3;

results in:

token1 == "1"
token2 == "23"
token3 == "4"

9 IStringParser& operator >>(unsigned long delta);

Moves the parser text position relative to the current parser text position. For

example:

"1234" >> token1 >> 1 >> token2 >> 2 >> token3;

results in:

token1 == "1"
token2 == "23"
token3 == "4"

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

 Constructors
The destructor member is the default. The constructor members are protected to prevent you

from creating objects except via use of the shift operators.

You can construct a string parser object by providing:

¹ a string that defines the text to be parsed

¹ an existing parser object (copy constructor)

Note that usually you will construct parser objects by applying the right-shift operator to a string.

The constructor is protected to prevent you from creating objects except via use of those

operators. Creation is prevented because of the nature of string parser objects. Since they hold

references to operands, it is unwise to permit the objects to persist beyond the scope of those

operands.

 IStringParser 511

IStringParser

 Constructors

1 IStringParser(const IStringParser& parser);

Construct an object from an existing IStringParser object. The IStringParser object

specifies the text string to parse. This constructor increments the usage count of the

IStringParser object.

2 IStringParser(const IString& text);

Construct an object from an IString object. The IString object specifies the text string

to parse.

Inherited Protected Data

IBase

recoverable unrecoverable

 Nested Classes

IStringParser contains the following nested classes:

IStringParser::SkipWords (see page 513)

Command Command { reset, skipWord, skip = skipWord };

These enumerators specify special purpose parsing tokens:

reset Resets the parser position to 1.

skip Causes the parser to skip one token (that is, a word) in the input text.

512 VisualAge C++ Open Class Library Reference

IStringParser::SkipWords

IStringParser::SkipWords

Derivation IBase

 IStringParser::SkipWords

Inherited By None.

Header File istparse.hpp

Members Member Page

Constructor 513

numberOfWords 513

SkipWords 513

Objects of the nested class IStringParser::SkipWords skip a specified number of

words in the input text without assigning those words to output strings. Use these

objects when parsing text with the class IStringParser (p. 503).

 Public Functions

 Constructors
You can construct objects of this class by specifying the number of words to skip. Use in

conjunction with IStringParser objects to parse the content of an IString (p. 469) and place

portions of the string into other strings.

Constructor You can construct objects of this class by specifying the number of words to skip.

The default is one word.

SkipWords(unsigned long numberOfWords = 1);

 Word Functions
Use these members to retrieve the number of words to skip. You set the number of words to

skip in the constructor.

 numberOfWords

Returns the number of words to skip.

unsigned long numberOfWords() const;

 Copyright IBM Corp. 1993, 1995 513

IStringParser::SkipWords

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

514 VisualAge C++ Open Class Library Reference

IStringTest

IStringTest

Derivation IBase

 IVBase

 IStringTest

Inherited By IStringTestMemberFn

Header File istrtest.hpp

Members Member Page Member Page

Constructor 516 type 517

data 517 ˜IStringTest 516

test 516

The IStringTest class defines the basic protocol for test objects that you can pass to

IStrings (p. 469) or I0Strings (p. 307) to assist in performing various test and search

functions. This class also provides concrete implementation for the common case of

using a C function for such testing.

The library provides a derived template class, IStringTestMemberFn (p. 519), to

facilitate using member functions of any class on the IString functions that support

IStringTest.

Derived classes should re-implement the virtual function IStringTest::test (p. 516) to

test characters passed by the IString and return the appropriate result.

A constructor for this class accepts a pointer to a C function that in turn accepts an

integer as a parameter and returns a Boolean. You can use such functions anywhere

an IStringTest can be used. Note that this is the type of the standard C library "is"

functions that check the type of C characters.

 Public Functions

Constructor and Destructor
You can construct and destruct objects of this class with a pointer to the C function to be used to

implement the member IStringTest::test (p. 516). Such members can be used anywhere an

 Copyright IBM Corp. 1993, 1995 515

IStringTest

IStringTest can be used. Note that these members are the same as the standard C library is....

functions that check the type of C characters.

This class also provides a protected constructor, which derived classes can use to reuse the space

for the C/C++ function pointer.

 Constructors

1 IStringTest(CFunction& cFunc);

Accepts a pointer to a C function.

2 IStringTest(CPPFunction& cppFunc);

Accepts a pointer to a C++ function.

Destructor ˜IStringTest();

 Testing
Use these members to implement an actual test.

test Tests the specified integer (character) and returns true or false as returned by the C

function provided at construction. Derived classes should override this function to

implement their own testing function.

virtual Boolean test(int c) const;

Inherited Public Functions

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

 Constructor
You can construct and destruct objects of this class with a pointer to the C function to be used to

implement the member IStringTest::test (p. 516). Such members can be used anywhere an

516 VisualAge C++ Open Class Library Reference

IStringTest

IStringTest can be used. Note that these members are the same as the standard C library is....

functions that check the type of C characters.

This class also provides a protected constructor, which derived classes can use to reuse the space

for the C/C++ function pointer.

IStringTest IStringTest(FnType type, void* userData);

Used by derived classes to reuse the space for the C/C++ function pointer.

 Protected Data

Test Function Description
Use these members to implement this class.

data Data member union, varying by FnType:

 cFn - Pointer to a C function.

 user - Pointer to an arbitrary derived-class data (if FnType is

neither c nor cpp).

union { CFunction *cFn; CPPFunction *cppFn; void *user; } data;

type Data member FnType. FnType is an enumeration describing the various flavors of

functions supported; user-defined, C, C++ static or non-member function, C++

member function, const C++ member function.

FnType type;

Inherited Protected Data

IBase

recoverable unrecoverable

Nested Type Definitions

FnType FnType { user, c, cpp, memFn, cMemFn };

Use these enumerators to specify the type of functions supported:

user User-defined.

c C.

 IStringTest 517

IStringTest

cpp C++ static or non-member function.

memFn C++ member function.

cMemFn Const C++ member function.

CFunction typedef ICStrTestFn CFunction;

Pointer to the C function that accepts an integer parameter and returns Boolean.

(int) typedef Boolean CPPFunction (int);

Pointer to plain (static or non-member) C++ function accepting integer argument and

returning Boolean.

518 VisualAge C++ Open Class Library Reference

IStringTestMemberFn

IStringTestMemberFn

Derivation IBase

 IVBase

 IStringTest

 IStringTestMemberFn

Inherited By None.

Header File istrtest.hpp

Members Member Page

Constructor 520

test 520

The library provides the template class IStringTestMemberFn as an IStringTest-type

wrapper for particular C++ member functions. Doing so lets you use such member

functions in conjunction with functions from IString (p. 469) and I0String (p. 307)

that accept an IStringTest (p. 515) object as an parameter.

Customization (Template Argument)

IStringTestMemberFn is a template class that is instantiated with the following

template argument:

T The class of object whose member function is to be wrappered.

 Public Functions

 Constructors
You can construct objects of this class in the following ways:

¹ Use the constructor that supports const member functions.

¹ Use the constructor that supports nonconst member functions. You must specify a nonconst

member function as the first parameter.

Both constructors for the object require the following:

¹ An object of the class T (nonconst object for nonconst member functions).

 Copyright IBM Corp. 1993, 1995 519

IStringTestMemberFn

¹ A pointer to a member function of the class T. The library applies this member function to

the specified object to test each character passed to the test member of this class. The

member function must accept a single integer parameter and return a Boolean.

 Constructors

1 IStringTestMemberFn(T& object, NonconstFn nonconstFn);

Use this for the non-const member functions. The object of the class T must be

non-const.

2 IStringTestMemberFn(const T& object, ConstFn constFn);

Use this for the const member functions.

 Testing
Use these members to dispatch member functions.

test Overridden to dispatch a member function against an object.

virtual Boolean test(int c) const;

Inherited Public Functions

IStringTest

test

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IStringTest

data type

520 VisualAge C++ Open Class Library Reference

IStringTestMemberFn

IBase

recoverable unrecoverable

Nested Type Definitions

(int) typedef Boolean (T::* NonconstFn) (int);

Non-const member function of the appropriate type.

const typedef Boolean (T::* ConstFn) (int) const;

const member function of the appropriate type.

 IStringTestMemberFn 521

IStringTestMemberFn

522 VisualAge C++ Open Class Library Reference

ISystemErrorInfo

ISystemErrorInfo

Derivation IBase

 IVBase

 IErrorInfo

 ISystemErrorInfo

Inherited By None.

Header File iexcept.hpp

Members Member Page Member Page

Constructor 524 text 525

errorId 524 throwSystemError 525

isAvailable 524 ˜ISystemErrorInfo 524

operator const char * 524

Objects of the ISystemErrorInfo class represent error information that you can include

in an exception object. When an OS/2 DOS system call results in an error condition,

objects of the ISystemErrorInfo class are created. You can use the error text to

construct a derived class object of IException (p. 379).

The library provides the ITHROWSYSTEMERROR macro for throwing exceptions

constructed with the following ISystemErrorInfo information:

¹ The error ID returned from the system function

¹ The name of the system function that returned an error code

¹ One of the values of the enumeration IErrorInfo::ExceptionType (p. 377), which

specifies the type of exception this macro creates

¹ One of the values of the enumeration IException::Severity (p. 386), which

specifies the severity of the exception

This macro generates code that calls throwSystemError (p. 525), which does the

following:

1. Creates an ISystemErrorInfo object

2. Uses the object to create an IException object

3. Adds the operatingSystem error group to the object

4. Adds location information

5. Logs the exception data

 Copyright IBM Corp. 1993, 1995 523

ISystemErrorInfo

6. Throws the exception

Motif You can create objects of this class on AIX, but the objects contain no useful

information and only have the default message: "System exception condition

detected."

 Public Functions

Constructor and Destructor
You can construct and destruct objects of this class. You cannot copy or assign objects of this

class.

Constructor ISystemErrorInfo(unsigned long systemErrorId,
const char* systemFunctionName = 0);

You can only construct objects of this class using the default constructor.

Note: If the constructor cannot load the error text, the library provides the following

default text: “No error text is available.”.

systemErrorId

The error ID identifying an operating system error.

systemFunctionName

(Optional) The name of the failing system call that returned the error ID.

If you specify systemFunctionName, the constructor prefixes it to the

error text.

Destructor virtual ˜ISystemErrorInfo();

 Error Information
Use these members to return error information provided by objects of this class.

errorId Returns the error ID.

virtual unsigned long errorId() const;

isAvailable If the error information is available, true is returned.

virtual Boolean isAvailable() const;

operator const char *

Returns the error text.

virtual operator const char *() const;

524 VisualAge C++ Open Class Library Reference

ISystemErrorInfo

text Returns the error text.

virtual const char* text() const;

 Throw Support
Use these members to support the throwing of exceptions.

 throwSystemError

This function is used by the ITHROWSYSTEMERROR macro. The function creates

an ISystemErrorInfo object and uses the text from it to do the following:

1. Create an exception object

2. Add the location information to it

3. Log the exception data

4. Throw the exception

systemErrorId

The error ID from the system.

functionName

The name of the function where the exception occurred.

location An IExceptionLocation (p. 389) object containing the following:

 ¹ Function name

 ¹ File name

¹ Line number where the function is called

name Use the enumeration IErrorInfo::ExceptionType (p. 377) to specify the

type of the exception. The default is accessError.

severity Use the enumeration IException::Severity (p. 386) to specify the severity

of the error. The default is recoverable.

static void throwSystemError(unsigned long systemErrorId,
const char* functionName,
const IExceptionLocation& location,
IErrorInfo::ExceptionType name = accessError,
IException::Severity severity = recoverable);

Inherited Public Functions

IErrorInfo

errorId isAvailable operator const char *

 ISystemErrorInfo 525

ISystemErrorInfo

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

526 VisualAge C++ Open Class Library Reference

ITime

ITime

Derivation IBase

 ITime

Inherited By None.

Header File itime.hpp

Members Member Page Member Page

Constructor 529 operator += 530

asCTIME 530 operator - 530

asSeconds 530 operator -= 530

asString 529 operator < 528

hours 531 operator <= 528

initialize 531 operator == 528

minutes 531 operator > 528

now 529 operator >= 528

operator != 528 seconds 531

operator + 530

Objects of the ITime class represent units of time (hours, minutes, and seconds) as

portions of days and provide support for converting these units of time into numeric

and ASCII format. You can compare and operate on ITime objects by adding them

to and subtracting them from other ITime objects.

A related class whose objects also represent units of time is the class IDate (p. 351).

The ITime class returns locale-sensitive information, based on the current locale

defined at runtime. See the description of the standard C function setlocale in the

OS/2 system documentation for information about setting the locale.

 Copyright IBM Corp. 1993, 1995 527

ITime

 Public Functions

 Comparisons
Use these members to compare two ITime objects. Use any of the full complement of

comparison operators and applying the natural meaning.

operator != Compares two objects to determine whether they are not equal.

Boolean operator !=(const ITime& aTime) const;

operator < Compares two objects to determine whether one is less than the other.

Boolean operator <(const ITime& aTime) const;

operator <= Compares two objects to determine whether one is less than or equal to the other.

Boolean operator <=(const ITime& aTime) const;

operator == Compares two objects to determine whether they are equal.

Boolean operator ==(const ITime& aTime) const;

operator > Compares two objects to determine whether one is greater than the other.

Boolean operator >(const ITime& aTime) const;

operator >= Compares two objects to determine whether one is greater than or equal to the

other.

Boolean operator >=(const ITime& aTime) const;

 Constructors
You can construct objects of this class in the following ways:

¹ Use the default constructor, which returns the current time.

¹ Give the number of seconds since midnight that the time represents. In this case, the

number of seconds can be negative and is subtracted from the number of seconds in a day.

¹ Give the number of hours, minutes, and seconds since midnight that the time represents. In

this case, the number of seconds cannot be negative.

¹ Copy another ITime object.

¹ Give a container details CTIME structure.

528 VisualAge C++ Open Class Library Reference

ITime

 Constructors

1 ITime(const ITime& aTime);

Use this constructor to copy another ITime object.

2 ITime();

Using this constructor returns the current time; it's the default.

3 ITime(long seconds);

Use this constructor by specifying the number of seconds since midnight that the time

is to represent. For negative values, the constructor subtracts that value from the

number of seconds in a day.

4 ITime(unsigned hours, unsigned minutes, unsigned seconds = 0);

Specify the number of hours, minutes, and seconds since midnight that the time

represents. The number of seconds cannot be negative.

5 ITime(const _CTIME& cTime); Supported On:

PM

You use this constructor to construct an ITime object from a container details CTIME

structure.

 Current Time
Use this member when you need the current time.

now Returns the current time.

Note: You can use this function as an ITime constructor.

static ITime now();

 Diagnostics
Use these members to provide an IString representation for an ITime object and the capability to

output the object to a stream. The formatting is based on the strftime conversion specifications.

Often, you use these members to write trace information when debugging your code.

asString Returns the ITime object as a string that is formatted according to the specified

format. This format string can contain time "conversion specifiers" as defined for the

standard C library function strftime in the TIME.H header file. The default format is

%X, which yields the time as hh:mm:ss. Refer to the VisualAge C++: C Library

Reference for more information about the strftime function.

The conversion specifiers that apply to ITime and their meanings are listed in the

following table. IDate::asString (p. 354) describes conversion specifiers that apply to

dates.

 ITime 529

ITime

IString asString(const char* fmt = " % X") const;

Specifier Meaning

%c Insert date and time of locale.

%H Insert hour (24-hour clock) as a decimal number (00-23).

%I Insert hour (12-hour clock) as a decimal number (01-12).

%M Insert minute (00-59).

%p Insert equivalent of either AM or PM locale.

%S Insert second (00-61).

%X Insert time representation of locale.

%Z Insert name of time zone, or no characters if time zone is not

available.

%% Insert %.

 Manipulation
Use these members to update an ITime object by adding or subtracting another ITime object.

Use any of the full complement of addition or subtraction operators and apply the natural

meaning.

operator + Adds two objects.

ITime operator +(const ITime& aTime) const;

operator += Adds two objects and stores the result in the receiver.

ITime& operator +=(const ITime& aTime);

operator - Subtracts one object from another.

ITime operator -(const ITime& aTime) const;

operator -= Subtracts one object from another and stores the result in the receiver.

ITime& operator -=(const ITime& aTime);

 Time Queries
Use these members to access the seconds, minutes and hours of an ITime object.

asCTIME Returns the time as a container CTIME structure.

_CTIME asCTIME() const; Supported On:

PM

asSeconds Returns the number of seconds since midnight.

long asSeconds() const;

530 VisualAge C++ Open Class Library Reference

ITime

hours Returns the number of hours past midnight.

unsigned hours() const;

minutes Returns the number of minutes past the hour.

unsigned minutes() const;

seconds Returns the number of seconds past the minute.

unsigned seconds() const;

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

 Implementation
Use these members to initialize objects of this class.

initialize A common initialization function used by the ITime constructors.

ITime& initialize(long seconds);

Inherited Protected Data

IBase

recoverable unrecoverable

 ITime 531

ITime

532 VisualAge C++ Open Class Library Reference

ITrace

ITrace

Derivation IBase

 IVBase

 ITrace

Inherited By None.

Header File itrace.hpp

Members Member Page Member Page

Constructor 535 threadId 538

disableTrace 536 traceDestination 537

disableWriteLineNumber 536 write 537

disableWritePrefix 536 writeFormattedString 538

enableTrace 536 writeString 538

enableWriteLineNumber 536 writeToQueue 537

enableWritePrefix 536 writeToStandardError 537

isTraceEnabled 536 writeToStandardOutput 537

isWriteLineNumberEnabled 536 ˜ITrace 535

isWritePrefixEnabled 536

Objects of the ITrace class provide module tracing within the library. Whenever an

exception is thrown by the library, trace records are output with information about the

exception. You can use the ICLUI_TRACE and ICLUI_TRACETO environment

variables to redirect the trace output to a file. The output trace records contain the

following:

¹ Error message text

 ¹ Error ID

 ¹ Class name

¹ Information from the class IExceptionLocation (p. 389)

The Data Type and Exception Class Library throws only two exceptions:

ID Explanation

1010 IC_ISTRING_OVERFLOW

1011 IC_ISTRING_INDEX_ERROR

These error numbers are defined in the header file icconst.h.

 Copyright IBM Corp. 1993, 1995 533

ITrace

For exceptions thrown by the User Interface Class Library, the value of the error ID

is one of the following:

¹ The value of WinGetLastError or ERRINFO.idError if the error is an OS/2

PM-related error.

¹ A hardcoded 0, if the exception is an X/Motif-related error. In most cases, these

window management systems do not give any error ID for the exception to pass

on.

¹ The throwing function, which typically throws the exception after performing a

system call, if the exception is a system error.

For exceptions thrown by the Collection Class Library, the error ID contains the

letters CCL, then four numeric digits, then the letter E.

Also by default, the library disables tracing. You can set tracing on by entering

ICLUI_TRACE=ON in the environment.

By default, the library attaches a prefix to the trace entry containing a sequence

number followed by the process and thread where the trace call occurred. You can

remove prefix area tracing by entering ICLUI_TRACE=NOPREFIX in the

environment. Doing so has the side effect of turning tracing on.

You can set the output location of tracing by entering one of the following in the

environment:

¹ ICLUI_TRACETO=STDERR for the standard error stream (stderr)

¹ ICLUI_TRACETO=STDOUT for the standard output (stdout)

¹ ICLUI_TRACETO=QUEUE for a queue

Specifying any of the preceding locations has the side effect of turning tracing on.

In addition to turning the trace options on and off in the environment, the library also

provides static member functions to do the same thing under program control.

The library supports trace input as IStrings or character arrays, and the library

automatically adds a line feed on all trace calls.

To enable you to compile the trace calls in and out of your code, the library provides

the following sets of macros for tracing modules and data:

¹ The library defines IC_TRACE_RUNTIME by default. The following macros

are expanded:

IMODTRACE_RUNTIME() IFUNCTRACE_RUNTIME() ITRACE_RUNTIME()

¹ If you define IC_TRACE_DEVELOP, the following macros, in addition to the

RUNTIME macros, are expanded:

534 VisualAge C++ Open Class Library Reference

ITrace

IMODTRACE_DEVELOP() IFUNCTRACE_DEVELOP() ITRACE_DEVELOP()

¹ If you define IC_TRACE_ALL, the following macros, in addition to the

RUNTIME and DEVELOP macros, are expanded:

IMODTRACE_ALL() IFUNCTRACE_ALL() ITRACE_ALL()

The IMODTRACE version of the macros accepts as input a module name that it uses

for construction and destruction tracing.

The IFUNCTRACE version of the macros accepts no input and uses the predefined

identifier __FUNCTION__ for construction and destruction tracing.

The ITRACE version of the macros accepts a text string to be written out.

PM In OS/2, the library supports the environment variables ICLUI TRACE and ICLUI

TRACETO, in addition to ICLUI_TRACE and ICLUI_TRACETO.

The default output location of tracing is the OS/2 queue \\QUEUES\\PRINTF32. You

can display this queue using the program PMPRTF32.EXE.

Motif The default output location of tracing is standardOutput. Setting the output location

of tracing to queue has the same effect in X/Motif as setting it to standardOutput.

 Public Functions

Constructor and Destructor
You can construct objects of this class by using the default constructor. If you do not specify the

optional values, this constructor creates an ITrace object, but no logging occurs on construction

or destruction.

Constructor ITrace(const char* traceName = 0, long lineNumber = 0);

You pass the optional parameters to gain the following trace behavior:

traceName (Optional) If you specify traceName, the name is written on construction

and again on destruction.

Warning: If you pass an IString (p. 469) to the trace object, you must

ensure that the lifetime of the IString exceeds the lifetime of the ITrace

object. The library does not support the use of temporary IStrings.

lineNumber

(Optional) The line number where the trace statement occurred.

Destructor ˜ITrace();

 ITrace 535

ITrace

Enabling and Disabling
Use these members to enable or disable tracing, as well as to query whether tracing is on.

disableTrace Disables trace entries from being written.

static void disableTrace();

enableTrace Enables trace entries to be written.

static void enableTrace();

 isTraceEnabled

Determines whether tracing is currently enabled.

static Boolean isTraceEnabled();

 Format
Use these members to enable, disable, and query the formatting options for writing trace output.

 disableWriteLineNumber

Disables the tracing of line number information.

static void disableWriteLineNumber();

 disableWritePrefix

Disables the writing of the process ID, the thread ID, and the output line number to

trace.

static void disableWritePrefix();

 enableWriteLineNumber

Enables the tracing of line number information.

static void enableWriteLineNumber();

 enableWritePrefix

Enables the writing of the process ID, the thread ID, and the output line number to

trace.

static void enableWritePrefix();

 isWriteLineNumberEnabled

Determines whether line numbers are currently being written.

static Boolean isWriteLineNumberEnabled();

 isWritePrefixEnabled

Determines whether the line count prefix is being written.

static Boolean isWritePrefixEnabled();

536 VisualAge C++ Open Class Library Reference

ITrace

 Output Operations
Use these members to do the following:

¹ Write trace data to the current trace location

¹ Query the current trace location

¹ Set the current trace location

 traceDestination

Returns the trace output destination for this trace object. The returned value is an

enumerator provided by ITrace::Destination (p. 539).

static ITrace::Destination traceDestination();

write Writes the specified text.

text The text to write as a character string.

text The text to write as an IString (p. 469).

static void write(const IString& text);
static void write(const char* text);

 writeToQueue

Sets the location for output to \\QUEUES\\PRINTF32.

static void writeToQueue();

Motif In AIX, this member function is equivalent to writeToStandardOutput (p. 537).

 writeToStandardError

Sets the location for output to the standard error stream.

static void writeToStandardError();

 writeToStandardOutput

Sets the location for output to the standard output stream. Using this function is

equivalent to setting the environment variable ICLUI_TRACETO=OUT.

Note: STDOUT is a synonym for OUT.

static void writeToStandardOutput();

Inherited Public Functions

IVBase

asDebugInfo asString

 ITrace 537

ITrace

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

 Protected Functions

 Output Operations
Use these members to do the following:

¹ Write trace data to the current trace location

¹ Query the current trace location

¹ Set the current trace location

 writeFormattedString

Writes the trace data after formatting, which includes the following:

¹ Adding the prefix, if necessary

¹ Updating any new lines embedded in the string to include the prefix

string Any trace information you want to write.

marker When the library uses this function, it specifies a character to mark, or

distinguish, whether the trace statement is entering (+) or exiting (-) a

function. You can specify marker for any purpose.

static void writeFormattedString(const IString& string,
 char* marker);

writeString Writes to the output device without formatting.

text Any trace information you want to write.

static void writeString(char* text);

 Thread ID
Use these members to query the thread ID.

threadId Returns the current thread identifier.

static unsigned long threadId();

Motif In environments that do not support kernel threads, this function always returns a 1.

538 VisualAge C++ Open Class Library Reference

ITrace

Inherited Protected Data

IBase

recoverable unrecoverable

Destination Destination { queue, standardError, standardOutput };

These enumerators specify the destination of the trace data:

queue Sends the trace data to the queue.

standardError Sends the trace data to the standard error stream (stderr).

standardOutput Sends the trace data to the standard output (stdout).

When used on the following platforms, the queue enumerator is not supported, and

queue tracing goes to stdout:

 ¹ AIX

 ¹ Solaris

 ¹ MVS

Motif AIX does not support the queue enumerator. If the trace destination is queue, tracing

goes to stdout.

 ITrace 539

ITrace

540 VisualAge C++ Open Class Library Reference

IVBase

IVBase

Derivation IBase

 IVBase

Inherited By IApplication IMMAudioCDContents::Cursor

IBaseComboBox::Cursor IMMSpeed

IBaseListBox::Cursor IMMTime

IBuffer INotebook::Cursor

IClipboard INotebook::PageSettings

IClipboard::Cursor INotifier

IColor IObserver

IContainerColumn IObserverList

IContainerControl::ColumnCursor IObserverList::Cursor

IContainerControl::CompareFn IProfile

IContainerControl::FilterFn IProfile::Cursor

IContainerControl::Iterator IRefCounted

IContainerControl::ObjectCursor IResource

IContainerControl::TextCursor IResourceLibrary

IContainerObject IResourceLock

IDMImage ISpinButton::Cursor

IDMItemProvider IStringTest

IDMRenderer ISubmenu::Cursor

IErrorInfo ITextSpinButton::Cursor

IEvent IThread

IFont IThread::Cursor

IFont::FaceNameCursor ITimer

IFont::PointSizeCursor ITimer::Cursor

IGList::Cursor IToolBar::FrameCursor

IGraphic IToolBar::WindowCursor

IGraphicContext ITrace

IHandler IWindow::BidiSettings

IMenu::Cursor IWindow::ChildCursor

IMessageBox IWindow::ExceptionFn

IMMAudioCDContents

Header File ivbase.hpp

Members Member Page

asDebugInfo 542

asString 542

˜IVBase 542

The IVBase class provides basic generic behavior for all the library classes that have

virtual functions. In addition, it allows derived classes to exploit the nested type and

 Copyright IBM Corp. 1993, 1995 541

IVBase

value names in the IBase class, such as Boolean, true, and false. See IBase (p. 323)

for information about that class.

Derived classes are expected to override the virtual functions IVBase::asString and

IVBase::asDebugInfo. This enables automatic support for the output of derived class

objects on ostreams, such as cout, cerr, or both. See asString (p. 542) and

asDebugInfo (p. 542) for information about those functions.

 Public Functions

Constructor and Destructor
The class provides a virtual destructor to ensure that all derived classes' destructors are also

virtual.

Destructor The virtual destructor ensures that all derived classes' destructors are also virtual.

virtual ˜IVBase();

 Conversions
Use these members to return an IVBase object in a different form.

asDebugInfo Obtains the diagnostic version of an object's contents. Generally, this is a hex

string representation of a pointer to the object.

virtual IString asDebugInfo() const;

asString Obtains the standard version of an object's contents.

virtual IString asString() const;

Inherited Public Functions

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

542 VisualAge C++ Open Class Library Reference

IXLibErrorInfo

IXLibErrorInfo

Derivation IBase

 IVBase

 IErrorInfo

 IXLibErrorInfo

Inherited By None.

Header File iexcept.hpp

Members Member Page Member Page

Constructor 544 text 545

errorId 544 throwXLibError 545

isAvailable 545 ˜IXLibErrorInfo 544

operator const char * 545

Objects of the IXLibErrorInfo class represent error information that you can include

in an exception object. When an X library call results in an error condition, objects

of the IXLibErrorInfo class are created. IThread registers a handler through

XSetErrorHandler to do the following:

¹ Detect the error condition

¹ Save the error code

You can use this error code to obtain the information about the X library error.

When you have an X library function call fail, construct an object of this class to

obtain the error text. You can use the error text to construct a derived class object of

IException (p. 379).

The library provides the ITHROWXLIBERROR macro for throwing exceptions

constructed with IXLibErrorInfo information. This macro has the following

parameters:

location The name of the X library function returning an error code.

name Use the enumeration ExceptionType (p. 377) to specify the type of the

exception. The default is accessError.

 Copyright IBM Corp. 1993, 1995 543

IXLibErrorInfo

severity Use the enumeration IException::Severity (p. 386) to specify the severity

of the error. The default is recoverable.

This macro generates code that calls throwXLibError (p. 545), which does the

following:

1. Creates an IXLibErrorInfo object

2. Uses the object to create an IException object

3. Adds location information

4. Logs the exception data

5. Throws the exception

PM The OS/2 release of the library does not support this class.

The IXLibErrorInfo class is provided for versions of the product that run on

X/Windows-based windowing systems. On OS/2, MVS and AS/400 versions of the

library, this class is not supported.

 Public Functions

Constructor and Destructor
You can construct and destruct objects of this class. You cannot copy or assign objects of this

class.

Constructor IXLibErrorInfo(const char* systemFunctionName = 0); Supported On:

Motif

You can only construct objects of this class using the default constructor.

Note: If the constructor cannot load the error text, the library provides the following

default text: "No error text is available."

systemFunctionName

(Optional) The name of the failing X library function. If you specify

systemFunctionName, the constructor prefixes it to the error text.

Destructor virtual ˜IXLibErrorInfo(); Supported On:

Motif

 Error Information
Use these members to return error information provided by objects of this class.

errorId Returns the X error code, which you can use to obtain the error text.

544 VisualAge C++ Open Class Library Reference

IXLibErrorInfo

virtual unsigned long errorId() const; Supported On:

Motif

isAvailable If the error text is available, true is returned.

virtual Boolean isAvailable() const; Supported On:

Motif

operator const char *

Returns the error text.

virtual operator const char *() const; Supported On:

Motif

text Returns the error text.

virtual const char* text() const; Supported On:

Motif

 Throw Support
Use these members to support the throwing of exceptions.

 throwXLibError

This function is used by the ITHROWCLIBERROR macro. The function creates an

IXLibErrorInfo object and uses the text from it to do the following:

¹ Create an exception object

¹ Add the location information to it

¹ Log the exception data

¹ Throw the exception

functionName

The name of the function where the exception occurred.

location An IExceptionLocation (p. 389) object containing the following:

 ¹ Function name

 ¹ File name

¹ Line number where the function is called

name Use the enumeration IErrorInfo::ExceptionType (p. 377) to specify the

type of the exception. The default is accessError.

severity Use the enumeration IException::Severity (p. 386) to specify the severity

of the error. The default is recoverable.

 IXLibErrorInfo 545

IXLibErrorInfo

static void throwXLibError(const char* functionName,
const IExceptionLocation& location,
IErrorInfo::ExceptionType name = accessError,
IException::Severity severity = recoverable);

Supported On:

Motif

Inherited Public Functions

IErrorInfo

errorId isAvailable operator const char *

IVBase

asDebugInfo asString

IBase

asDebugInfo messageFile setMessageFile

asString messageText version

Inherited Protected Data

IBase

recoverable unrecoverable

546 VisualAge C++ Open Class Library Reference

Database Access Class Library

Part 8. Database Access Class Library

Use the database access classes to connect and disconnect from your DB2/2 database

and to perform transactions in the database.

Database Access C++ Classes . 549

IDatastore . 549

IPersistentObject . 553

IPOManager . 556

Database Access C++ Exception Classes . 559

IConnectFailed . 559

IDatastoreAccessError . 560

IDatastoreAdaptorException . 561

IDatastoreConnectionInUse . 562

IDatastoreConnectionNotOpen . 563

IDatastoreLogoffFailed . 564

IDatastoreLogonFailed . 564

IDisconnectError . 565

IDSAccessError . 566

Database Access SOM Classes . 569

Datastore & DatastoreFactory . 569

PersistentObject & POFactory . 571

 Copyright IBM Corp. 1993, 1995 547

Database Access Class Library

548 VisualAge C++ Open Class Library Reference

Database Access C++ Classes

Data Access Builder

C++ Classes

This chapter describes the C++ version of the database access classes. Use these

classes when you generate Visual Builder parts.

 IDatastore

The IDatastore provides client connection to the database, disconnect from the

database, and commit and rollback of transactions.

The following attributes are used by IDatastore:

 ¹ authentication

The authentication is the password. When logon is performed, if the userName is

a null string, authentication is not used.

 ¹ datastoreName

This is the name of the datastore to connect to.

 ¹ userName

When attempting a connect, if userName or authentication are not specified (""),

IDatastore throws the exception IDatastoreLogonFailed if there is no current user

logged on. If userName and authentication are both specified, IDatastore.connect

attempts a logon if the current logged on user is different than userName.

– If logon was performed during IDatastore.connect, IDatastore.disconnect will

logoff.

– If already connected, IDatastore.connect disconnects and reconnects

(including logon if necessary).

Two classes are provided to allow IDatastore to be used within Visual Builder when

building your applications. They are:

 ¹ IDatastore

 ¹ IDSConnectCanvas

These parts can be found in the file VBDAX.VBB.

IDatastore is a nonvisual part provided in VBDAX.VBB. This part is the visual

interface to the Data Access Builder class IDatastore. It is a reusable part that can be

dropped into the nonvisual portion of your application.

 Copyright IBM Corp. 1993, 1995 549

Public Members

Use this part to connect to the datastore when the application is started. Use the

settings page for this part to set the datastoreName after placing it into the

composition editor edit area. Then use the ready event of the frame to call the

connect() method, and the close event of the frame to call the disconnect() method.

IDSConnectCanvas is a visual part (a child of ICanvas), provided in VBDAX.VBB.

This part provides a user interface to access the functions of IDatastore. It is a

reusable part that can be dropped into the main frame window of your visual

applications. Use this part when the connect panel is to be the primary window of an

application, or to access IDatastore from other places within the application in

addition to the connect window.

Use this part by dropping onto the canvas of the primary frame window of the

application. IDatastoreInterface is an exposed attribute of this part. Use the exposed

events, methods and attributes to control IDatastore in addition to the controls

provided on the canvas.

Derivation IStandardNotifier

 IDatastore

Header File IDatastore is declared in idsmcon.hpp.

Members The following methods are provided:

Method Page Method Page

Constructor 550 disconnect 552

Destructor 551 isConnected 552

authentication 551 rollback 552

commit 551 setAuthentication 552

connect() 551 setDatastoreName 553

connect 551 setUserName 553

datastoreName 552 userName 553

 Public Members

Constructor IDatastore ();

IDatastore (const IString& datastoreName,
const IString& userName = "",
const IString& authentication = "");

The IDatastore constructor allocates an object. This object is used to manage a

connection to the datastore.

550 VisualAge C++ Open Class Library Reference

Public Members

Destructor virtual ˜IDatastore ();

The IDatastore destructor frees space allocated by the constructor.

 authentication
IString
 authentication() const;
IDatastore&

setAuthentication(const IString& aAuthentication);

Gets the authentication.

commit void commit ()

Commits the transactions.

 Exceptions

 ¹ IDatastoreAccessError

 ¹ IDatastoreConnectionNotOpen

connect() void connect ()

Performs the connect using the current settings specified. If there is already a

connection to the database, it is disconnected and then reconnected using the current

settings. For information regarding userName, see page 549.

 Exceptions

 ¹ IConnectFailed

 ¹ IDatastoreAccessError

 ¹ IDatastoreConnectionInUse

 ¹ IDatastoreLogoffFailed

 ¹ IDatastoreLogonFailed

connect void
connect (const IString& datastoreName,

const IString& userName = "",
const IString& authentication = "");

Performs the connect using the input parameters specified. If there is already a

connection to the database, it is disconnected and then reconnected using the current

settings. For information regarding userName, see page 549.

 Database Access C++ Classes 551

Public Members

 Exceptions

 ¹ IConnectFailed

 ¹ IDatastoreAccessError

 ¹ IDatastoreConnectionInUse

 ¹ IDatastoreLogoffFailed

 ¹ IDatastoreLogonFailed

 datastoreName
IString
 datastoreName() const;

Gets the current datastore name setting.

disconnect void disconnect ()

Closes the connection to a database. If a logon was performed on the connect,

userName is logged off.

 Exceptions

 ¹ IDatastoreConnectionNotOpen

 ¹ IDatastoreLogoffFailed

 ¹ IDisconnectError

isConnected Boolean isConnected ();

Returns true if there is a connection to the database.

rollback void rollback ()

Performs a rollback on the transactions.

 Exceptions

 ¹ IDatastoreAccessError

 ¹ IDatastoreConnectionNotOpen

 setAuthentication
IDatastore&

setAuthentication(const IString& aAuthentication);

Sets the authentication (password). For information regarding authentication, see

page 549.

552 VisualAge C++ Open Class Library Reference

IPersistentObject

 setDatastoreName
IDatastore&

setDatastoreType(const IString& aDatastoreName);

Sets the datastore name that is used when a connection is established.

setUserName IDatastore&
setUserName(const IString& aUserName);

Sets the user name. For information regarding userName, see page 549.

userName IString
 userName() const;

Gets the current user name setting. For information regarding userName, see page

549.

 IPersistentObject

The IPersistentObject class provides the basic data manipulation operations where a

client can call directly to add, update, delete or retrieve a row from a table. It is the

abstract base class for all of the parts generated by the tool.

The generated part also contains the methods for getting and setting the attribute

values. These methods are:

¹ <attribute type> <Attribute>() const

¹ const IString & <Attribute>AsString() const

¹ void set<attribute>(attribute type)

¹ void set<Attribute>(const IString &)

¹ Boolean is<Attribute>Nullabe() const

¹ Boolean is<Attribute>Null() const

¹ void set<Attribute>ToNull(Boolean = true)

Derivation IStandardNotifier

 IPersistentObject

Header File IPersistentObject is declared in ipersist.hpp.

Members The following methods are provided:

Method Page Method Page

constructors 554 add 554

destructor 554 delete 554

 Database Access C++ Classes 553

Public Members

Method Page Method Page

isDefaultReadOnly 554 operator= 555

isReadOnly 555 retrieve 555

operator!= 555 setReadOnly 555

operator== 555 update 555

 Public Members

Constructors IPersistentObject ();
IPersistentObject (const IPersistentObject& partCopy);

The IPersistentObject constructor allocates space for keeping the values of the

selected columns from a single row of a table.

Destructor virtual ˜IPersistentObject ();

The IPersistentObject destructor frees the allocated space by the constructor.

add virtual IPersistentObject &add () = 0;

Add a row to a table using the data attribute values set in the object. The object

should be uniquely identified by the data identifier.

 Exceptions

 ¹ IDSAccessError

delete virtual IPersistentObject &del () = 0;

Delete rows from a table using the data identifier set in the object. The composition

of the data identifier is defined for the concrete class.

 Exceptions

 ¹ IDSAccessError

 isDefaultReadOnly
virtual void isDefaultReadOnly();

This function returns a value of true if the table is read-only by default. Otherwise, it

returns a value of false. If the table is read-only by default, an exception occurs on

an add, delete or update statement. In this case, you can only use the retrieve

statement to read the row from the table. Also, when the table is read-only by

default, you can not use setReadOnly to change the setting.

554 VisualAge C++ Open Class Library Reference

Public Members

isReadOnly virtual Boolean isReadOnly();

This function returns a value of true if the table is read-only. Otherwise, it returns a

value of false. If the table is read-only, an exception occurs on an add, delete or

update statement.

 operator!=
Boolean
 operator != (const IPersistentObject& value) const,
 operator != (const IPersistentObject* value) const;

Compares the values of two persistent objects.

 operator==

Boolean
 operator == (const IPersistentObject& value) const,
 operator == (const IPersistentObject* value) const,

Compares the values of two persistent objects.

 operator=

IPersistentObject&
operator= (const IPersistentObject& aIPersistentObject);

This function assigns the values kept in the other object to this object.

retrieve virtual IPersistentObject &retrieve () = 0;

Retrieve a row from a table using the data identifier set in the object. The

composition of the data identifier is defined by the concrete class. The data identifier

must be set on the object before calling retrieve.

 Exceptions

 ¹ IDSAccessError

setReadOnly virtual void setReadOnly (Boolean flag=true);

This function sets the table to read-only or updateable.

update virtual IPersistentObject &update () = 0;

Update the row using the data identifier set in the object. The composition of the

data identifier is defined by the concrete class.

 Database Access C++ Classes 555

IPOManager

 Exceptions

 ¹ IDSAccessError

 IPOManager

The IPOManager class provides operations to deal with collections of rows from a

table. It is the abstract base class for all of the generated collection parts. The

collection is pointed by a private data member and its data type is a pointer to

IVSequence<PersistentObject*>. You can manipulate the items in the collection with

the functions in the IVSequence class.

Derivation IStandardNotifier

 IPOManager

Header File IPOManager is declared in ipersist.hpp.

Members The following methods are provided:

Method Page Method Page

constructors 556 refresh 556

destructor 556 select 557

item() 556

 Public Members

Constructors IPOManager();
IPOManager(const IPOManager& partCopy);
IPOManager& operator= (const IPOManager& aIPOManager);

The IPOManager constructor allocates space for supporting collection parts.

Destructor virtual ˜IPOManager();

The IPOManager destructor frees allocated space.

items() virtual IVSequence<PersistentObject*>* items();

Returns the pointer to the cllection containing objects. This is a template and is not

implemented in the base class.

refresh virtual IPOManager &refresh () = 0;

Retrieves a collection of all rows on the table from the database.

556 VisualAge C++ Open Class Library Reference

Public Members

 Exceptions

 ¹ IDSAccessError

select virtual IPOManager &select (const IString& clause) = 0;

Retrieves a collection of all rows on the table that match the specified predicate from

the datastore. The predicate must be specified in the syntax of the SQL where

clause.

 Exceptions

 ¹ IDSAccessError

 Database Access C++ Classes 557

Public Members

558 VisualAge C++ Open Class Library Reference

Database Access C++ Exception Classes

Data Access Builder

C++ Exception Classes

 IConnectFailed

Derivation IException

 IDatastoreAdaptorException

 IConnectFailed

Header File idsexc.hpp

Objects of the IConnectFailed class represent an exception. This class creates and

throws an object when one of the following occurs:

¹ maximum number of IDatastoreMgr connections has already been reached

¹ a connection was attempted while a transaction was in progress

 Constructors
public:
IConnectFailed(

const char *errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (see page 386) to specify

the severity of the error. The default is unrecoverable.

 Public Members

name virtual const char *name() const;

Returns the name of the object’s class.

 Copyright IBM Corp. 1993, 1995 559

IDatastoreAccessError

Inherited Public Members

For information on the members inherited from the IException class, see “IException”

on page 379.

 IDatastoreAccessError

Derivation IException

 IDatastoreAccessError

Header File idsexc.hpp

Objects of the IDatastoreAccessError class represent an exception. This class creates

and throws an object when one of the following occurs:

¹ bind file not found

 ¹ connect error

 ¹ bind error.

 Constructors
public:
IDatastoreAccessError(

const char *errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (see page 386) to specify

the severity of the error. The default is unrecoverable.

 Public Members

name virtual const char *name() const;

Returns the name of the object’s class.

560 VisualAge C++ Open Class Library Reference

IDatastoreAdaptorException

Inherited Public Members

For information on the members inherited from the IException class, see “IException”

on page 379.

 IDatastoreAdaptorException

Derivation IException

 IDatastoreAdaptorException

Header File idsexc.hpp

Objects of the IDatastoreAdaptorException class represent an exception. This class is

a generic exception message of accessing datastore.

 Constructors
public:
IDatastoreAdaptorException(

const char *errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (see page 386) to specify

the severity of the error. The default is unrecoverable.

 Public Members

name virtual const char *name() const;

Returns the name of the object’s class.

Inherited Public Members

For information on the members inherited from the IException class, see “IException”

on page 379.

 Database Access C++ Exception Classes 561

IDatastoreConnectionInUse

 IDatastoreConnectionInUse

Derivation IException

 IDatastoreAdaptorException

 IDatastoreConnectionInUse

Header File idsexc.hpp

Objects of the IDatastoreConnectionInUse class represent an exception. This class

creates and throws an object when a connection is attempted using a connection

which is already in use.

 Constructors
public:
IDatastoreConnectionInUse(

const char *errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (see page 386) to specify

the severity of the error. The default is unrecoverable.

 Public Members

name virtual const char *name() const;

Returns the name of the object’s class.

Inherited Public Members

For information on the members inherited from the IException class, see “IException”

on page 379.

562 VisualAge C++ Open Class Library Reference

IDatastoreConnectionNotOpen

 IDatastoreConnectionNotOpen

Derivation IException

 IDatastoreAdaptorException

 IDatastoreConnectionNotOpen

Header File idsexc.hpp

Objects of the IDatastoreConnectionNotOpen class represent an exception. This class

creates and throws an object when an operation which requires a connection was

attempted but the connection has not been established yet. For example, a call to

disconnect before a connection was made.

 Constructors
public:
IDatastoreConnectionNotOpen(

const char *errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (see page 386) to specify

the severity of the error. The default is unrecoverable.

 Public Members

name virtual const char *name() const;

Returns the name of the object’s class.

Inherited Public Members

For information on the members inherited from the IException class, see “IException”

on page 379.

 Database Access C++ Exception Classes 563

IDatastoreLogoffFailed

 IDatastoreLogoffFailed

Derivation IException

 IDatastoreLogoffFailed

Header File idsexc.hpp

Objects of the IDatastoreLogoffFailed class represent an exception. The class creates

and throws an object when a logoff failes.

 Constructors
public:
IDatastoreLogoffFailed(

const char *errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (see page 386) to specify

the severity of the error. The default is unrecoverable.

 Public Members

name virtual const char *name() const;

Returns the name of the object’s class.

Inherited Public Members

For information on the members inherited from the IException class, see “IException”

on page 379.

 IDatastoreLogonFailed

Derivation IException

 IDatastoreLogonFailed

Header File idsexc.hpp

Objects of the IDatastoreLogonFailed class represent an exception. The class creates

and throws an object when a logon attempt fails.

564 VisualAge C++ Open Class Library Reference

IDisconnectError

 Constructors
public:
IDatastoreLogonFailed(

const char *errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (see page 386) to specify

the severity of the error. The default is unrecoverable.

 Public Members

name virtual const char *name() const;

Returns the name of the object’s class.

Inherited Public Members

For information on the members inherited from the IException class, see “IException”

on page 379.

 IDisconnectError

Derivation IException

 IDatastoreAdaptorException

 IDisconnectError

Header File idsexc.hpp

Objects of the IDisconnectError class represent an exception. This class creates and

throws an object when a disconnect error occurs.

 Constructors
public:
IDisconnectError(

const char *errorText, unsigned long errorId,
Severity severity = IException::unrecoverable);

You can create objects of this class by doing the following:

¹ Using the constructor.

 Database Access C++ Exception Classes 565

IDSAccessError

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (see page 386) to specify

the severity of the error. The default is unrecoverable.

 Public Members

name virtual const char *name() const;

Returns the name of the object’s class.

Inherited Public Members

For information on the members inherited from the IException class, see “IException”

on page 379.

 IDSAccessError

Derivation IException

 IDSAccessError

Header File idsexc.hpp

Objects of the IDSAccessError class represent an exception thrown from generated

code.

When thrown, errorId is set with the following values:

DAX_ADD_READONLY // Add used on a readonly table/view
DAX_ADD_SQLERR // SQL error occurred on add
DAX_UPD_READONLY // Update used on a readonly table/view
DAX_UPD_SQLERR // SQL error occurred on update
DAX_DEL_READONLY // Delete used ona readonly table/view
DAX_DEL_SQLERR // SQL error occurred on delete
DAX_RET_SQLERR // SQL error occurred on retrieve
DAX_REF_SQLERR // SQL error occurred on refresh
DAX_SEL_SQLERR // SQL error occurred on select
DAX_ADD_NONNULL // Add with non-nullable column not mapped
DAX_NUL_NONNULL // Cannot SetToNull non-nullable column
DAX_DFT_READONLY // Cannot SetReadOnly to false on a readonly table/view
DAX_SYS_LOCK // Error occurred during system semaphore/locking call
DAX_ADD_NULL_DATAID // Add with a null DataId
DAX_UPD_NULL_DATAID // Update with a null DataId
DAX_DEL_NULL_DATAID // Delete with a null DataId
DAX_RET_NULL_DATAID // Retrieve with a null DataId

566 VisualAge C++ Open Class Library Reference

IDSAccessError

 Constructors
public:
IDSAccessError(

const char* a,
unsigned long b = 0,
Severity c = IException::unrecoverable,
struct sqlca* sqlca_p=0

);

You can create objects of this class by doing the following:

¹ Using the constructor.

errorText The text describing this particular error.

errorId The identifier you want to associate with this particular error.

severity Use the enumeration IException::Severity (see page 386) to specify

the severity of the error. The default is unrecoverable.

sqlca Uses the contents of the sqlca at the time of the exception.

 Public Members

name virtual const char *name() const;

Returns the name of the object’s class.

getSqlca struct sqlca const& getSqlca() const;

Returns the contents of the sqlca at the time of the exception.

Inherited Public Members

For information on the members inherited from the IException class, see “IException”

on page 379.

 Database Access C++ Exception Classes 567

IDSAccessError

568 VisualAge C++ Open Class Library Reference

Database Access SOM Classes

Data Access Builder

SOM Classes

This chapter describes the SOM version of the Database Access classes. Use these

classes when you want to use SOM objects.

Datastore & DatastoreFactory

Datastore and DatastoreFactory provide client connection to the database, disconnect

from the database, and commit and rollback of transactions.

For additional information, see “IDatastore” on page 549.

interface DatastoreFactory : SOMClass {

 Datastore create_object();
Datastore create_object_defaults(in string datastore_name,

in string user_name,
in string authentication);

 #ifdef __SOMIDL__
 implementation {
 releaseorder :
 create_object;
 create_object_defaults;
 };
 #endif
};

interface Datastore : SOMObject {
 void

connect (in string datastore_name,
in string user_name,
in string authentication,

 raises (DaxExcep::ConnectFailed,
 DaxExcep::DatastoreConnectionInUse,
 DaxExcep::DatastoreAccessError,
 DaxExcep::DatastoreLogonFailed,
 DaxExcep::DatastoreLogoffFailed);

 void
 connect_defaults ()
 raises (DaxExcep::ConnectFailed,
 DaxExcep::DatastoreConnectionInUse,
 DaxExcep::DatastoreAccessError,
 DaxExcep::DatastoreLogonFailed,
 DaxExcep::DatastoreLogoffFailed);

 Copyright IBM Corp. 1993, 1995 569

Datastore & DatastoreFactory

 void
 disconnect ()
 raises (DaxExcep::DatastoreConnectionNotOpen,
 DaxExcep::DisconnectError,
 DaxExcep::DatastoreLogoffFailed);

 void
 commit ()
 raises DaxExcep::DatastoreAccessError,
 DaxExcep::DatastoreConnectionNotOpen);

 void
 rollback ()
 raises DaxExcep::DatastoreAccessError,
 DaxExcep::DatastoreConnectionNotOpen);

 boolean
 is_connected ();
 boolean
 is_sharemode_exclusive();
 void

enable_sharemode_exclusive (in boolean enable);

attribute string datastore_name;
attribute string user_name;
attribute string authentication;

 #ifdef __SOMIDL__
 implementation
 {

metaclass = DatastoreFactory;

 releaseorder: connect,
 connect_defaults,
 disconnect,
 commit,
 rollback,
 is_connected,
 is_sharemode_exclusive,
 enable_sharemode_exclusive,
 _get_datastore_name,
 _set_datastore_name,
 _get_user_name,
 _set_user_name,
 _get_authentication,
 _set_authentication,

datastore_name: noset, noget;
user_name: noset, noget;
authentication: noset, noget;

 somInit: override;
 somUninit: override;
 };
 #endif
};
#endif

570 VisualAge C++ Open Class Library Reference

PersistentObject & POFactory

PersistentObject & POFactory

The PersistentObject class provides the basic data manipulation operations where a

client can call directly to add, update, delete or retrieve a row from a table. It is the

abstract base class for all of the parts generated by the tool. For additional

information, see “IPersistentObject” on page 553.

The POFactory class provides operations to deal with collections of rows from a

table. For additional information, see “IPOManager” on page 556.

interface POFactory : SOMClass
{
 exception POFError
 {
 long error_code;
 long sqlcode;
 };

sequence<PersistentObject> retrieveAll() raises(POFError);
sequence<PersistentObject> select(in string clause) raises(POFError);

void setPOFException(in long errorCode, in long sqlcode);

 #ifdef __SOMIDL__
 implementation
 {

releaseorder : retrieveAll,
 select,
 setPOFException;
 };
 #endif
};
interface PersistentObject : SOMObject
{
 exception POError
 {
 long error_code;
 long sqlcode;
 };

void add() raises(POError);
void update() raises(POError);
void del() raises(POError);
void retrieve() raises(POError);
void setPOException(in long errorCode, in long sqlcode);

 #ifdef __SOMIDL__
 implementation
 {

releaseorder : add,
 update,
 del,

 Database Access SOM Classes 571

PersistentObject & POFactory

 retrieve,
 setPOException;

metaclass = POFactory;
 };
 #endif
};

When an exception occurs, error_code is set with the following values:

DAX_ADD_READONLY // Add used on a readonly table/view
DAX_ADD_SQLERR // SQL error occurred on add
DAX_UPD_READONLY // Update used on a readonly table/view
DAX_UPD_SQLERR // SQL error occurred on update
DAX_DEL_READONLY // Delete used ona readonly table/view
DAX_DEL_SQLERR // SQL error occurred on delete
DAX_RET_SQLERR // SQL error occurred on retrieve
DAX_REF_SQLERR // SQL error occurred on refresh
DAX_SEL_SQLERR // SQL error occurred on select
DAX_ADD_NONNULL // Add with non-nullable column not mapped
DAX_NUL_NONNULL // Cannot SetToNull non-nullable column
DAX_DFT_READONLY // Cannot SetReadOnly to false on a readonly table/view
DAX_SYS_LOCK // Error occurred during system semaphore/locking call
DAX_ADD_NULL_DATAID // Add with a null DataId
DAX_UPD_NULL_DATAID // Update with a null DataId
DAX_DEL_NULL_DATAID // Delete with a null DataId
DAX_RET_NULL_DATAID // Retrieve with a null DataId

If the exception is an SQL exception, the sqlcode is set with the SQLCODE returned

from the static SQL statement.

572 VisualAge C++ Open Class Library Reference

Part 9. Appendix, Bibliography, Glossary, and Index

 Copyright IBM Corp. 1993, 1995 573

574 VisualAge C++ Open Class Library Reference

Example Header Files

Header Files for

Collection Class Library Coding Examples

This appendix contains edited header files used by some coding examples found in

this book. The following header files are shown:

Header File Page Header File Page

animal.h 575 parcel.h 582

circle.h 576 planet.h 583

curve.h 577 toyword.h 584

demoelem.h 578 transelm.h 584

dsur.h 579 trmapops.h 585

line.h 581 xebc2asc.h 586

graph.h 580

These header files can be found in ...\ibmclass\samples\iclcc. Some comments

and white space have been removed.

 animal.h
// animal.h - Class Animal for use with the example animals.C

#include <iglobals.h> // For definition of Boolean
#include <istring.hpp> // Class IString

 #include <iostream.h>

class Animal {
 IString nm;
 IString attr;

public:

Animal(IString n, IString a) : nm(n), attr(a) {}

// For copy constructor we use the compiler generated default.
// For assignment we use the compiler generated default.

IBoolean operator==(Animal const& p) const {
return ((nm == p.name()) && (attr == p.attribute()));

 }

IString const& name() const {
 return nm;
 }

IString const& attribute() const {
 return attr;
 }

friend ostream& operator<<(ostream& os, Animal const& p) {
return os << "The " << p.name() << " is " << p.attribute()
<< "." << endl;

 }

 Copyright IBM Corp. 1993, 1995 575

Example Header Files

};

// Key access:
inline IString const& key(Animal const& p) {
 return p.name();
}

// We need a hash function for the key type as well.
// Let's just use the default provided for IString.

inline unsigned long hash(Animal const& animal, unsigned long n) {
return hash(animal.name(), n);

}

 circle.h
// circle.h

#include <istring.hpp>

class Circle : public Graphics {
public:
 float ivXCenter;
 float ivYCenter;
 float ivRadius;

Circle(int graphicsKey, IString id ,
double xCenter, double yCenter,

 double radius)
: Graphics(graphicsKey, id),

 ivXCenter(xCenter),
 ivYCenter(yCenter),

ivRadius(radius) { }

IBoolean operator== (Circle const& circle) const {
return (this->ivXCenter == circle.ivXCenter &&

this->ivYCenter == circle.ivYCenter &&
this->ivRadius == circle.ivRadius);

 }

void draw() const {
cout << "drawing "

<< Graphics::id() << endl
<< "with center: "
<< "(" << this->ivXCenter << "|"
<< this->ivYCenter << ")"
<< " and with radius: "
<< this->ivRadius << endl;

 }

void circumference() const {
cout << "The circumference of "

<< Graphics::id() << " is: "
<< ((this->ivRadius)*2*3.14) << endl;

 }
};

576 VisualAge C++ Open Class Library Reference

Example Header Files

 curve.h
// curve.h

#include <istring.hpp>

class Curve : public Graphics {
public:

float ivXStart, ivYStart;
float ivXFix1, ivYFix1;
float ivXFix2, ivYFix2;
float ivXFix3, ivYFix3;

 float ivXEnd, ivYEnd;

Curve(int graphicsKey, IString id,
float xstart, float ystart,
float xfix1, float yfix1,
float xfix2, float yfix2,
float xfix3, float yfix3,
float xend, float yend) :

 Graphics(graphicsKey, id),
 ivXStart(xstart), ivYStart(ystart),
 ivXFix1(xfix1), ivYFix1(yfix1),
 ivXFix2(xfix2), ivYFix2(yfix2),
 ivXFix3(xfix3), ivYFix3(yfix3),
ivXEnd(xend), ivYEnd(yend) { }

IBoolean operator== (Curve const& curve) const {
return (this->ivXStart == curve.ivXStart &&

this->ivYStart == curve.ivYStart &&
 this->ivXFix1 == curve.ivXFix1 &&
 this->ivYFix1 == curve.ivYFix1 &&
 this->ivXFix2 == curve.ivXFix2 &&
 this->ivYFix2 == curve.ivYFix2 &&
 this->ivXFix3 == curve.ivXFix3 &&
 this->ivYFix3 == curve.ivYFix3 &&
 this->ivXEnd == curve.ivXEnd &&
 this->ivYEnd == curve.ivYEnd);
 }

void draw() const {
cout << "drawing " << Graphics::id()

<< "\nwith starting point: "
<< "(" << this->ivXStart << "|"
<< this->ivYStart << ")"
<< " and with fix points: "
<< "(" << this->ivXFix1 << "|" << this->ivYFix1 << ")"
<< "(" << this->ivXFix2 << "|" << this->ivYFix2 << ")"
<< "(" << this->ivXFix3 << "|" << this->ivYFix3 << ")\n"
<< "and with ending point: "
<< "(" << this->ivXEnd << "|" << this->ivYEnd << ")"

 << endl;
 }

 Appendix A. Header Files for Collection Class Library Coding Examples 577

Example Header Files

void lengthOfCurve() const {
cout << "Length of "

 << Graphics::id()
<< " is: "
<< (sqrt(pow(((this->ivXFix1) - (this->ivXStart)),2)

+ pow(((this->ivYFix1) - (this->ivYStart)),2))
+ sqrt(pow(((this->ivXFix2) - (this->ivXFix1)),2)

+ pow(((this->ivYFix2) - (this->ivYFix1)),2))
+ sqrt(pow(((this->ivXFix3) - (this->ivXFix2)),2)

+ pow(((this->ivYFix3) - (this->ivYFix2)),2))
+ sqrt(pow(((this->ivXEnd) - (this->ivXFix3)),2)

+ pow(((this->ivYEnd) - (this->ivYFix3)),2)))
 << endl;
 }
};

 demoelem.h
// demoelem.h - DemoElement for use with Key Collections
#ifndef _DEMOELEM_H
#define _DEMOELEM_H

#include <stdlib.h>
#include <iglobals.h>
#include <iostream.h>
#include <istdops.h>

class DemoElement {
int i, j;

public:
DemoElement () : i(0), j(0) {}
DemoElement (int i,int j) : i (i), j(j) {}
operator int () const { return i; }

IBoolean operator == (DemoElement const& k) const
{ return i == k.i && j == k.j; }

IBoolean operator < (DemoElement const& k) const
{ return i < k.i || (i == k.i && j < k.j); }

friend unsigned long hash (DemoElement const& k, unsigned long n)
{ return k.i % n; }

int const & geti () const { return i; }
int const & getj () const { return j; }

};

inline ostream & operator << (ostream &sout, DemoElement const& e)
{ sout << e.geti () << "," << e.getj ();
 return sout;
}

inline int const& key (DemoElement const& k) { return k.geti (); }

// NOTE: You must return a const & in the key function! Otherwise the
// standard element operations will return a reference to a temporary.
// This would lead to incorrect behavior of the collection operations.

// The key function must be declared in the header file of
// the collection's element type.

// If either of these is not possible or is undesirable,
// an element operations class must be used.
#endif

578 VisualAge C++ Open Class Library Reference

Example Header Files

 dsur.h
// dsur.h - Class for Disk Space Usage Records
// Used by Sorted Map and Sorted Relation example
 #include <fstream.h>
 #include <string.h>
 #include <iglobals.h>
const int bufSize = 62;

 class DiskSpaceUR {
 int blocks;
 char* name;

 public:
 DiskSpaceUR() {}

DiskSpaceUR (DiskSpaceUR const& dsur) { init(dsur); }
void operator= (DiskSpaceUR const& dsur) {

 deInit();
 init(dsur);
 }

DiskSpaceUR (istream& DSURfile) { DSURfile >> *this; }
˜DiskSpaceUR () { deInit(); }

IBoolean operator == (DiskSpaceUR const& dsur) const {
return (blocks == dsur.blocks)

&& strcmp (name, dsur.name) == 0;
 }

friend istream& operator >> (istream& DSURfile,
 DiskSpaceUR& dsur) {

DSURfile >> dsur.blocks;

 char temp[bufSize];
 DSURfile.get(temp, bufSize);

 if (DSURfile.good()) {
// Remove leading tabs and blanks

for (int cnt=0;
(temp[cnt] == '\t') || (temp[cnt] == ' ');

 cnt++) {}
dsur.name = new char[strlen(temp+cnt)+1];

 strcpy(dsur.name, temp+cnt);
 }
 else {
 dsur.setInvalid();

dsur.name = new char[1];
dsur.name[0] = '\0';

 }

 return DSURfile;
 }

friend ostream& operator << (ostream& outstream,
 DiskSpaceUR& dsur) {
 outstream.width(bufSize);
 outstream.setf(ios::left, ios::adjustfield);

outstream << dsur.name;

 outstream.width(9);
 outstream.setf(ios::right, ios::adjustfield);

outstream << dsur.blocks;

 return outstream;
 }

 Appendix A. Header Files for Collection Class Library Coding Examples 579

Example Header Files

inline int const& space () const {return blocks;}
inline char* const& id () const {return name;}
inline IBoolean isValid () const {return (blocks > 0);}

 protected:

inline void init (DiskSpaceUR const& dsur) {
blocks = dsur.blocks;
name = new char[strlen(dsur.name) + 1];

 strcpy(name, dsur.name);
 }

inline void deInit() { delete[] name; }
inline void setInvalid () { blocks = -1;}

 };

// Key access on name
 inline char* const& key (DiskSpaceUR const& dsur) {
 return dsur.id();
 }

// Key access on space used
// Since we can not have two key functions with same args
// in global name space, we need to use an operations class.

 #include <istdops.h>
// We can inherit all from the default operations class
// and then define just the key access function ourselves.
// We cannot use StdKeyOps here, because they in turn
// use the key function in global name space, which is
// already defined for keys of type char* above.

class DSURBySpaceOps : public IStdMemOps,
public IStdAsOps< DiskSpaceUR >,
public IStdEqOps< DiskSpaceUR > {

 public:
IStdCmpOps < int > keyOps;

// Key Access
int const& key (DiskSpaceUR const& dsur) const
{ return dsur.space(); }

 };

 graph.h
#include <istring.hpp>
#include <iostream.h>

class Graphics {
protected:
IString ivId; //*** graphics ID ****/
int ivKey; //*** graphics key ****/

public:
Graphics (int graphicsKey, IString id) : ivKey(graphicsKey),

ivId(id) { }

 ¡Graphics() {
cout << this->ivId << " will now be deleted ... " << endl;

 }

IBoolean operator== (Graphics const& graphics) const {
return (this->ivId == graphics.ivId);

 }

580 VisualAge C++ Open Class Library Reference

Example Header Files

IString const& id() const { return ivId; }

virtual void draw() const =0;

/**** This member function returns the graphic's key ****/
/* Note that we are returning the int by reference, */
/* because this member function will be used by the */
/* key(...) function, which must return a reference. */

 /**/
int const& graphicsKey() const {

 return ivKey;
 }
};

/**************** key function *********************/
/**** note that this interface must always be used with: ****/
/**** Keytype const& key(....) ****/
/**** We are providing this key function for the element ****/
/**** type Graphics and not for the managed pointer. ****/
/***/
inline int const& key (Graphics const& graphics) {

 return graphics.graphicsKey();
 }

 line.h
#include <istring.hpp>
#include <math.h>

class Line : public Graphics {
public:

double ivXStart, ivYStart;
double ivXEnd, ivYEnd;

Line(int graphicsKey, IString id, double xstart, double ystart,
double xend, double yend) :

 Graphics(graphicsKey, id),
 ivXStart(xstart), ivYStart(ystart),

ivXEnd(xend), ivYEnd(yend) { }

IBoolean operator== (Line const& line) const {
return (this->ivXStart == line.ivXStart &&

this->ivYStart == line.ivYStart &&
this->ivXEnd == line.ivXEnd &&
this->ivYEnd == line.ivYEnd);

 }

void draw() const {
cout << "drawing " << Graphics::id() << endl

<< "with starting point: "
<< "(" << this->ivXStart << "|" << this->ivYStart << ")"
<< " and with ending point: "
<< "(" << this->ivXEnd << "|" << this->ivYEnd << ")" << endl;

 }

void lengthOfLine() const {
cout << "The length of line " << Graphics::id() << " is: "

<< sqrt(pow(((this->ivXEnd) - (this->ivXStart)),2)
+ pow(((this->ivYEnd) - (this->ivYStart)),2))

 << endl;
 }
};

 Appendix A. Header Files for Collection Class Library Coding Examples 581

Example Header Files

 parcel.h
// parcel.h - Class Parcel and its parts for use with the
// example for Key Sorted Set and Heap.
#include <iostream.h>

// For definition of Boolean:
#include <iglobals.h>

// Class IString:
#include <istring.hpp>

class PlaceTime {

 IString cty;
int daynum; // Keeping it simple: January 9 is day 9

public:
PlaceTime(IString acity, int aday) : cty(acity), daynum(aday) {}
PlaceTime(IString acity) : cty(acity) {daynum = 0;}
IString const& city() const { return cty; }
int const& day() const { return daynum; }
void operator=(PlaceTime const& pt) {

cty = pt.cty;
daynum = pt.daynum;

 }

IBoolean operator==(PlaceTime const& pt) const {
return ((cty == pt.cty)

&& (daynum == pt.daynum));
 }
};

class Parcel {
PlaceTime org, lstAr;
IString dst, id;

public:

Parcel(IString orig, IString dest, int day, IString ident)
: org(orig, day), lstAr(orig, day), dst(dest), id(ident) {}

void arrivedAt(IString const& acity, int const& day) {
PlaceTime nowAt(acity, day);

// Only if not already there before
if (nowAt.city() != lstAr.city())

lstAr = nowAt;
 }

void wasDelivered(int const& day) {arrivedAt(dst, day); }
PlaceTime const& origin() const { return org; }
IString const& destination() const { return dst; }
PlaceTime const& lastArrival() const { return lstAr; }
IString const& ID() const { return id; }

friend ostream& operator<<(ostream& os, Parcel const& p) {
os << p.id << ": From " << p.org.city()

<< "(day " << p.org.day() << ") to " << p.dst;

if (p.lstAr.city() != p.dst) {
os << endl << " is at " << p.lstAr.city()

<< " since day " << p.lstAr.day() << ".";
 }

582 VisualAge C++ Open Class Library Reference

Example Header Files

 else {
os << endl << " was delivered on day "

<< p.lstAr.day() << ".";
 }
 return os;
 }
};

// Key access:
 inline IString const& key(Parcel const& p) { return p.ID(); }

// We need a compare function for the key.
// Let's use the default provided for IString:

inline long compare(Parcel const& p1, Parcel const& p2) {
return compare(p1.ID(), p2.ID());

 }

 planet.h
// planet.h - Class Planet for use in our Sorted Set example

class Planet {
 private:
 char* plname;

float dist, mass, bright;

 public:
// Use the compiler generated default for the copy constructor

Planet(char* aname, float adist, float amass, float abright) :
plname(aname), dist(adist), mass(amass), bright(abright) {}

// For any Set we need to provide element equality.
IBoolean operator== (Planet const& aPlanet) const

{ return plname == aPlanet.plname; }

// For a Sorted Set we need to provide element comparision.
IBoolean operator< (Planet const& aPlanet) const

{ return dist < aPlanet.dist; }

 char* name() { return plname; }

IBoolean isHeavy() { return (mass > 1.0); }
IBoolean isBright() { return (bright < 0.0); }

};

// Iterator
#include <iostream.h>

class SayPlanetName : public IIterator<Planet> {
 public:

virtual IBoolean applyTo(Planet& p)
{ cout << " " << p.name() << " "; return True;}

};

 Appendix A. Header Files for Collection Class Library Coding Examples 583

Example Header Files

 toyword.h
// toyword.h - Class Word for use with coding examples.

#include <istring.hpp>

class Word {
 IString ivWord;
 unsigned ivKey;

public:

//Constructor to be used for sample: wordbag.c
Word (IString word, unsigned theLength) : ivWord(word),

 ivKey(theLength)
 {}

//Constructor to be used for sample: wordseq.c
Word (IString word) : ivWord(word) {}

IBoolean operator> (Word const& w1) {
return this->ivWord > w1.ivWord;

 }

unsigned setKey() {
this->ivKey = this->ivWord.length();

 return this->ivKey;
 }

IString const& getWord() const { return this->ivWord; }
unsigned const& getKey() const { return this->ivKey; }

};

// Key access. The length of the word is the key.
inline unsigned const& key (Word const &aWord)
{ return aWord.getKey(); }

 transelm.h
// transelm.h - For use with the Translation Table example.
#ifndef _TRANSELM_H
#define _TRANSELM_H

#include <iglobals.h>

class TranslationElement {

 char ivAscCode;
 char ivEbcCode;

public:

/* Let the compiler generate Default and Copy Constructor,*/
/* Destructor and Assignment for us. */

char const& ascCode () const { return ivAscCode; }
char const& ebcCode () const { return ivEbcCode; }

TranslationElement (char asc, char ebc)
: ivAscCode(asc), ivEbcCode(ebc) {};

584 VisualAge C++ Open Class Library Reference

Example Header Files

/* We need to define the equality relation. */
IBoolean operator == (TranslationElement const& te) const {

return ivAscCode == te.ivAscCode
&& ivEbcCode == te.ivEbcCode;

 };

/* An ordering relation must not be defined for */
/* elements in a map. */

/* We need to define the key access for the elements. */
/* We decided to define all key operations in a */
/* separate operations class in file trmapops.h. */

};
#endif

 trmapops.h
// trmapops.h - Translation Map Operations
// Base class for element operations for Translation Map example
#ifndef _TRMAPOPS_H
#define _TRMAPOPS_H

// Get the standard operation classes.
#include <istdops.h>

#include "transelm.h"

class TranslationOps : public IEOps < TranslationElement >
{
public:
class KeyOps : public IStdEqOps < char >, public IStdHshOps < char >

 {
 } keyOps;
};

// Operations Class for the EBCDIC-ASCII mapping:
class TranslationOpsE2A : public TranslationOps
{
public: // Key Access
char const& key (TranslationElement const& te) const
{ return te.ebcCode (); }

};

// Operations Class for the ASCII-EBCDIC mapping:
class TranslationOpsA2E : public TranslationOps
{
public: // Key Access
char const& key (TranslationElement const& te) const
{ return te.ascCode (); }

};
#endif

 Appendix A. Header Files for Collection Class Library Coding Examples 585

Example Header Files

 xebc2asc.h
// xebc2asc.h : EBCDIC - ASCII Translation Table.
 const unsigned char translationTable[256] = {
0x00,0x01,0x02,0x03,0xCF,0x09,0xD3,0x7F,0xD4,0xD5,0xC3,0x0B,0x0C,0x0D,0x0E,0x0F,
0x10,0x11,0x12,0x13,0xC7,0xB4,0x08,0xC9,0x18,0x19,0xCC,0xCD,0x83,0x1D,0xD2,0x1F,
0x81,0x82,0x1C,0x84,0x86,0x0A,0x17,0x1B,0x89,0x91,0x92,0x95,0xA2,0x05,0x06,0x07,
0xE0,0xEE,0x16,0xE5,0xD0,0x1E,0xEA,0x04,0x8A,0xF6,0xC6,0xC2,0x14,0x15,0xC1,0x1A,
0x20,0xA6,0xE1,0x80,0xEB,0x90,0x9F,0xE2,0xAB,0x8B,0x9B,0x2E,0x3C,0x28,0x2B,0x7C,
0x26,0xA9,0xAA,0x9C,0xDB,0xA5,0x99,0xE3,0xA8,0x9E,0x21,0x24,0x2A,0x29,0x3B,0x5E,
0x2D,0x2F,0xDF,0xDC,0x9A,0xDD,0xDE,0x98,0x9D,0xAC,0xBA,0x2C,0x25,0x5F,0x3E,0x3F,
0xD7,0x88,0x94,0xB0,0xB1,0xB2,0xFC,0xD6,0xFB,0x60,0x3A,0x23,0x40,0x27,0x3D,0x22,
0xF8,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x96,0xA4,0xF3,0xAF,0xAE,0xC5,
0x8C,0x6A,0x6B,0x6C,0x6D,0x6E,0x6F,0x70,0x71,0x72,0x97,0x87,0xCE,0x93,0xF1,0xFE,
0xC8,0x7E,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0xEF,0xC0,0xDA,0x5B,0xF2,0xF9,
0xB5,0xB6,0xFD,0xB7,0xB8,0xB9,0xE6,0xBB,0xBC,0xBD,0x8D,0xD9,0xBF,0x5D,0xD8,0xC4,
0x7B,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0xCB,0xCA,0xBE,0xE8,0xEC,0xED,
0x7D,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F,0x50,0x51,0x52,0xA1,0xAD,0xF5,0xF4,0xA3,0x8F,
0x5C,0xE7,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5A,0xA0,0x85,0x8E,0xE9,0xE4,0xD1,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0xB3,0xF7,0xF0,0xFA,0xA7,0xFF
};

586 VisualAge C++ Open Class Library Reference

abstract class ¹audio track

 Glossary

This glossary defines terms and abbreviations that are used in

this book. If you do not find the term you are looking for,

refer to the IBM Dictionary of Computing, New

York:McGraw-Hill, 1994.

This glossary includes terms and definitions from the

American National Standard Dictionary for Information

Systems, ANSI X3.172-1990, copyright 1990 by the

American National Standards Institute (ANSI). Copies may

be purchased from the American National Standards Institute,

1430 Broadway, New York, New York 10018.

A
abstract class. (1) A class with at least one pure virtual

function that is used as a base class for other classes. The

abstract class represents a concept; classes derived from it

represent implementations of the concept. You cannot

construct an object of an abstract class. See also base class.

(2) A class that allows polymorphism.

abstract data type. A mathematical model that includes a

structure for storing data and operations that can be

performed on that data. Common abstract data types include

sets, trees, and heaps.

abstraction (data). See data abstraction.

access. An attribute that determines whether or not a class

member is accessible in an expression or declaration. It can

be public, protected, or private.

access declaration. A declaration used to adjust access to

members of a base class.

access function. A function that returns information about

the elements of an object so that you can analyze various

elements of a string.

access resolution. The process by which the accessibility of

a particular class member is determined.

access specifier. One of the C++ keywords public, private,

or protected.

ambiguous derivation. A derivation where the class is

derived from two or more base classes that have members

with the same name.

amplifier. A device that increases the strength of input

signals. Also referred to as an amp.

amplifier-mixer. A combination amplifier and mixer that is

used to control the characters of an audio signal from one or

more audio sources. Also referred to as an amp-mixer.

animate. Make or design in such a way as to create

apparently spontaneous, lifelike movement.

animation rate. The number of thousandths of a second that

pass before the next bitmap is displayed for a button while it

is animated.

anonymous union. A union that is declared within a

structure or class and that does not have a name.

area. In computer graphics, a filled shape, such as a solid

rectangle.

array. An aggregate that consists of data objects, with

identical attributes, each of which may be uniquely referenced

by subscripting.

array implementation. (In Collection Class Library)

Implementation of an abstract data type using an array. Also

called a tabular implementation.

ASCII (American National Standard Code for

Information Interchange). The standard code, using a

coded character set consisting of 7-bit coded characters (8

bits including parity check), that is used for information

interchange among data processing systems, data

communication systems, and associated equipment. The

ASCII set consists of control characters and graphic

characters.

Note: IBM has defined an extension to ASCII code

(characters 128-255).

audio. Pertaining to the portion of recorded information that

can be heard.

audio attributes. The standard audio attributes are: mute,

volume, balance, treble, and bass.

audio formats. The way the audio information is stored and

interpreted.

audio track. (1) The audio (sound) portion of the program.

(2) The physical location where the audio is places beside the

image. (A system with two sound tracks can have either

 Copyright IBM Corp. 1993, 1995 587

automatic storage ¹character array

stereo sound or two independent sound tracks.) Synonymous

with sound track.

automatic storage. Storage that is allocated on entry to a

routine or block and is freed on the subsequent return.

Sometimes referred to as stack storage or dynamic storage.

automatic storage management. The process that

automatically allocates and deallocates objects in order to use

memory efficiently.

auxiliary classes. Classes that support other classes.

Auxilliary classes in the Collection Class Library include

classes for cursors, pointers and iterators.

AVL tree. A balanced binary search tree that does not allow

the height of two siblings to differ by more than one.

B
B*-tree (B star tree). A tree in which only the leaves

contain whole elements. All other nodes contain keys.

background color. The color in which the background of a

graphic primitive is drawn.

balance. (1) For audio, refers to the relative strength of the

left and right channels. A balance level of 0 is left channel

only. A balance level of 100 is right channel only (2) A

state of equilibrium, usually between treble and bass.

base class. A class from which other classes are derived. A

base class may itself be derived from another base class. See

also abstract class.

based on. A relationship between two classes in which one

class is implemented through the other. A new class is

“based on” an existing class when the existing class is used

to implement it.

bass. The lower half of the whole vocal or instrumental

tonal range.

bit field. A member of a structure or union that contains a

specified number of bits.

bit mask. A pattern of characters used to control the

retention or elimination of portions of another patterns of

characters.

bits-per-sample. The number of bits of audio data that is to

represent each sample of each channel (right or left). This is

the resolution of the audio data. CD quality needs to be 16

bits-per-sample.

boundary alignment. The position in main storage of a

fixed-length field (such as byte or doubleword) on an integral

boundary for that unit of information.

For the Class Library example, a word boundary is a storage

address evenly divisible by two.

bounded collection. A collection that has an upper limit on

the number of elements it can contain.

brightness. The level of luminosity of the video signal. A

brightness level of 0 produces a maximally white signal. A

brightness level of 100 produces a maximally black signal.

built-in. A function that the compiler automatically puts

inline instead of generating a call to the function.

C
camcorder. A compact, hand-held video camera with

integrated videotape recorder.

canvas. Canvases are windows with a layout algorithm that

manage child windows. The canvas classes are a set of

window classes which allow you to implement dialog-like

windows (that is, a window with several child controls).

These windows are used for showing views of objects as both

pages in a notebook and as windows that gather information

to run an action. The different canvases can manage the size

and position of child windows, provide moveable split bars

between windows, and support the ability to scroll a window.

The canvases include the base class, ICanvas, and its four

derived classes: IMultiCellCanvas, ISetCanvas, ISplitCanvas,

and IViewport.

cast. A notation used to express the conversion of one type

to another.

catch block. A block associated with a try block that

receives control when a C++ exception matching its argument

is thrown.

CD. Compact disc

CD-ROM. Compact disc-read-only memory

CD-XA. Compact disc-extended architecture

channel mapping. The translation of a MIDI channel

number for a sending device to an appropriate channel for a

receiving device.

character array. An array of type char.

588 VisualAge C++ Open Class Library Reference

child ¹C/2

child. A node that is subordinate to another node in a tree

structure. Only the root node of a tree is not a child.

child class. See derived class.

child window. A window derived from another window and

drawn relative to it.

circular slider control. A 360-degree knob-like control that

simulates the buttons on a TV, a stereo, or video components.

By rotating the slider arm, the user can set, display, or

modify a value, such as the balance, bass, volume, or treble.

class. A user-defined type. Classes can be defined

hierarchically, allowing one class to be an expansion of

another, and classes can restrict access to their members.

class hierarchy. A tree-like structure showing relationships

among classes. It places one abstract class at the top (a base

class) and one or more layers of derived classes below it.

class library. A collection of classes.

class template. A blueprint describing how a set of related

classes can be constructed.

client area window. An intermediate window between an

IFrameWindow and its controls and other child windows.

client program. A program that uses a class. The program

is said to be a client of the class.

collection. (1) In a general sense, an implementation of an

abstract data type for storing elements. (2) An abstract class

without any ordering, element properties, or key properties.

All abstract Collection Classes are derived from Collection.

Collection Classes. A set of classes that implement abstract

data types for storing elements.

color palette. A set of all the colors that can be used in a

displayed image.

compact disc (CD). (1) A disc, usually 4.75 inches in

diameter, from which data is read optically by means of a

laser. (2) A disc with information stored in the form of pits

along a spiral track. The information is decoded by a

compact-disc player and interpreted as digital audio data,

which most computers can process.

compact disc-extended architecture (CD-EX). A storage

format that accommodates interleaved storage of audio, video,

and standard file system data.

compact disc-read-only memory (CD-ROM). (1) An

optical storage medium (2) High-capacity, read-only memory

in the form of an optically read compact disc.

Complex Mathematics library. A C++ class library that

provides the facilities to manipulate complex numbers and

perform standard mathematical operations on them.

composite. The combination of two or more film, video, or

electronic images into a single frame or display.

computer-controlled device. An external video source

device with frame-stepping capability, usually a videodisc

player, whose output can be controlled by the multimedia

subsystem.

concrete class. A class that implements an abstract data

type but does not allow polymorphism.

const. (1) An attribute of a data object that declares that the

object cannot be changed. (2) An attribute of a function that

declares that the function will not modify data members of its

class.

constructor. A special class member function that has the

same name as the class and is used to construct and possibly

initialize objects of its class type. A return type is not

specified.

containment function. A function that determines whether a

collection contains a given element.

copy constructor. A constructor used to make a copy of an

object from another object of the same type.

critical section. Code that must be executed by one thread

while all other threads in the process are suspended.

cursor. A reference to an element at a specific position in a

data structure.

cursor iteration. The process of repeatedly moving the

cursor to the next element in a collection until some condition

is satisfied.

cursored emphasis. When the selection cursor is on a

choice, that choice has cursored emphasis.

C/2. A version of the C language designed for the OS/2

environment.

 Glossary 589

daemon ¹double-byte character set (DBCS)

D
daemon. A program that runs unattended to perform a

service for other programs.

data abstraction. A data type with a private representation

and a public set of operations. The C++ language uses the

concept of classes to implement data abstraction.

DBCS (Double-Byte Character Set). See double-byte

character set.

deck. A line of child windows in a set canvas that is

direction-independent. A horizontal deck is equivalent to a

row and a vertical deck is equivalent to a column.

declaration. Introduces a name to a program and specifies

how the name is to be interpreted.

declare. To specify the interpetation that C++ gives to each

identifier.

default argument. An argument that is declared with a

default value in a function prototype or declaration. If a call

to the function omits this argument, the default value is used.

Arguments with default values must be the trailing arguments

in a function prototype argument list.

default class. A class with preprogrammed definitions that

can be used for simple implementations.

default constructor. A constructor that takes no arguments,

or a constructor for which all the arguments have default

values.

default implementation. One of several possible

implementation variants offered as the default for a specific

abstract data type.

default operation class. A class with preprogrammed

definitions for all required element and key operations for a

particular implementation.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free-storage

deallocation operator. (2) A C++ operator used to destroy

objects created by operator new.

deque. A queue that can have elements added and removed

at both ends. A double-ended queue.

dequeue. An operation that removes the first element of a

queue.

derivation. (1) The creation of a new or derived class from

an existing base class. (2) The relationship between a class

and the classes above or below it in a class hierarchy.

derived class. A class that inherits from a base class. You

can add new data members and member functions to the

derived class. You can manipulate a derived class object as

if it were a base class object. The derived class can override

virtual functions of the base class.

Synonym for child class and subclass.

destructor. A special member function that has the same

name as its class, preceded by a tilde (˜), and that “cleans up”

after an object of that class, for example, by freeing storage

that was allocated when the object was created. A destructor

has no arguments, and no return type is specified.

difference. Given two sets A and B, the difference (A-B) is

the set of all elements contained in A but not in B.

digital audio. Audio data that has been converted to digital

form.

digital video. Material that can be seen and that has been

converted to digital form.

digital video device. A full-motion video device that can

record or play files (or both) containing digitally stored video.

diluted array. An array in which elements are deleted by

being flagged as deleted, rather than by actually removing

them from the array and shifting later elements to the left.

diluted sequence. A sequence implemented using a diluted

array.

direct manipulation. A user interface technique whereby

the user initiates application functions by manipulating the

objects, represented by icons, on the Presentation Manager

(PM) or Workplace Shell desktop. The user typically

initiates an action by:

1. Selecting an icon

2. Pressing and holding down a mouse button while

“dragging” the icon over another object’s icon on the

desktop

3. Releasing the mouse button to “drop” the icon over the

target object.

Thus, this technique is also known as “drag and drop”

manipulation.

double-byte character set (DBCS). A set of characters in

which each character is represented by 2 bytes. Languages

such as Japanese, Chinese, and Korean, which contain more

590 VisualAge C++ Open Class Library Reference

doubleword ¹eyecatcher

symbols than can be represented by 256 code points, require

double-byte character sets.

Because each character requires 2 bytes, you need hardware

and supporting software that are DBCS-enabled to enter,

display, and print DBCS characters.

doubleword. A contiguous sequence of bits or characters

that comprises two computer words and can be addressed as a

unit. For the C Set++ for AIX compiler, a doubleword is 32

bits (4 bytes).

drag after. A target enter event that occurs in a container

where its orderedTargetEmphasis or mixedTargetEmphasis

attribute is set and the current view is name, text, or details.

drag item. A “proxy” for the object being manipulated.

drag over. A target enter event that occurs in a container

where its orderedTargetEmphasis attribute is not set and the

current view is icon or tree view.

drop offset. The location where the next container object

that is dropped will be positioned (if the target operation’s

drop style is not IDM::dropPosition). The position is based

upon the last object that was dropped as an offset of that

object relative to the drop style.

E
EBCDIC (extended binary-coded decimal interchange

code). A coded character set of 256 8-bit characters.

element. The component of an array, subrange, enumeration,

or set.

element equality. A relation that determines whether two

elements are equal.

element function. A function, called by a member function,

that accesses the elements of a class.

encapsulation. The hiding of the internal representation of

objects and implementation details from the client program.

enqueue. An operation that adds an element as the last

element to a queue.

enumeration constant. An identifier that is defined in an

enumeration and that has an associated constant integer value.

You can use an enumeration constant anywhere an integer

constant is allowed.

enumeration data type. A type that represents integers and

a set of enumeration constants. Each enumeration constant

has an associated integer value.

equality collection. (1) An abstract class with the property

of element equality. (2) In general, any collection that has

element equality.

equality key collection. An abstract class with the

properties of element equality and key equality.

equality key sorted collection. An abstract class with the

properties of element equality, key equality, and sorted

elements.

equality sequence. A sequentially ordered flat collection

with element equality.

equality sorted collection. An abstract class with the

properties of element equality and sorted elements.

exception. (1) A user or system error detected by the

system and passed to an OS/2 or user exception handler.

(2) For C++, any user, logic, or system error detected by a

function that does not itself deal with the error but passes the

error on to a handling routine (also called “throwing the

exception”).

exception handler. (1) A function that is invoked when an

exception is detected, and that either corrects the problem and

returns execution to the program, or terminates the program.

(2) In C++, a catch block that catches a C++ exception when

it is thrown from a function in a try block.

exception handling. A type of error handling that allows

control and information to be passed to an exception handler

when an exception occurs. Under the OS/2 operating system,

exceptions are generated by the system and handled by user

code. In C++, try, catch, and throw expressions are the

constructs used to implement C++ exception handling.

external data definition. A definition appearing outside a

function. The defined object is accessible to all functions

that follow the definition and are located within the same

source file as the definition.

eyecatcher. A recognizable sequence of bytes that

determines which parameters were passed in which registers.

This sequence is used for functions that have not been

prototyped or have a variable number of parameters.

 Glossary 591

file descriptor ¹hit testing

F
file descriptor. A small positive integer that the system uses

instead of the file name to identify an open file.

file scope. A name declared outside all blocks and classes

has file scope and can be used after the point of declaration

in a source file.

filter. A command whose operation consists of reading data

from standard input or a list of input files and writing data to

standard output. Typically, its function is to perform some

transformation on the data stream.

first element. The element visited first in an iteration over a

collection. Each collection has its own definition for first

element. For example, the first element of a sorted set is the

element with the smallest value.

flat collection. A collection that has no hierarchical

structure.

font. A particular size and style of typeface that contains

definitions of character sets, marker sets, and pattern sets.

frame. (1) A complete television picture that is composed

of two scanned fields, one of the even lines and one of the

odd lines. In the NTSC system, a frame has 525 horizontal

lines and is scanned in 1/30th of a second. (2) A border

around a window.

frame extension. A control you can add if it is not available

in the basic Presentation Manager frame windows.

frame number. (1) The number used to identify a frame.

(2) The location of a frame on a videodisc or in a video file.

On videodisc, frames are numbered sequentially from 1 to

54,000 on each side and can be accessed individually; on

videotape, the numbers are assigned by way of the SMPTE

time code.

frame rate. The speed at which the frames are scanned.

For a videodisc player, the speed at which frames are scanned

is 30 frames per second for NTSC video. For most videotape

devices, the speed is 24 frames per second.

friend class. A class in which all the member functions are

granted access to the private and protected members of

another class. It is named in the declaration of the other

class with the prefix friend.

friend function. A function that is granted access to the

private and protected parts of a class. It is named in the

declaration of the class with the prefix friend.

full-motion video. (1) Video playback at 30 frames per

second on NTSC signals. (2) A digital video compression

technique that operates in real time.

G
gain. The ability to change the audibility of the sound, such

as during a fade in or fade out of music.

graphic attributes. Attributes that apply to graphic

primitives. Examples are color, line type, and shading-pattern

definition.

graphic primitive. A single item of drawn graphics, such as

a line, arc, or graphics text string.

graphical user interface (GUI). Type of computer interface

consisting of a visual metaphor of a real-world scene, often

of a desktop.

graphics. A picture defined in terms of graphic primitives

and graphic attributes.

GUI. Graphical user interface.

H
halftone. The reproduction of continuous-tone artwork, such

as a photograph, by converting the image into dots of various

sizes.

hash function. A function that determines which category,

or bucket, to put an element in. A hash function is needed

when implementing a hash table.

hash table. A data structure that divides all elements into

(preferably) equal-sized categories, or buckets, to allow quick

access to the elements. The hash function determines which

bucket an element belongs in.

header file. A file that can contain system-defined control

information or user data and generally consists of

declarations.

heap. An unordered flat collection that allows duplicate

elements.

height of a tree. The length of the longest path from the

root to a leaf.

hit testing. The means of identifying which graphic object

the mouse is pointing to.

592 VisualAge C++ Open Class Library Reference

implementation class ¹key sorted set

I
implementation class. A class that implements a concrete

class. Implementation classes are never used directly.

incomplete class declaration. A class declaration that does

not define any members of a class. Typically, you use an

incomplete class declaration as a forward declaration.

indirection. A mechanism for connecting objects by storing,

in one object, a reference to another object.

inheritance. (1) A mechanism by which a derived class can

use the attributes, relationships, and member functions

defined in more abstract classes related to it (its base classes).

See also multiple inheritance. (2) An object-oriented

programming technique that allows you to use existing

classes as bases for creating other classes.

initializer. An expression used to initialize objects.

inlined function. A function call that the compiler replaces

with the actual code for the function. You can direct the

compiler to inline a function with the inline keyword.

input stream. A stream used to read input.

instance number. A number that the operating system uses

to keep track of all of the instances of the same type of

device. For example, the amplifier-mixer device name is

AMPMIX plus a 2-digit instance number. If a program

creates two amplifier-mixer objects, the device names could

be AMPMIX01 and AMPMIX02.

integral object. A character object, an object having an

enumeration type, an object having variations of the type int,

or an object that is a bit field.

interactive graphics. Graphics that a user at a terminal can

move or manipulate.

interactive video. The process of combining video and

computer technology so that the user’s actions, choices, and

decisions affect the way in which the program unfolds.

interrupt. A temporary suspension of a process caused by

an external event, performed in such a way that the process

can be resumed.

intersection. Given collections A and B, the set of elements

that is contained in both A and B.

intrinsic function. A function supplied by a program as

opposed to a function supplied by the compiler.

inverted colors. Opposite colors in the light spectrum.

iteration. The process of repeatedly applying a function to a

series of elements in a collection until some condition is

satisfied.

iteration order. The order in which elements are accessed

when iterating over a collection. In ordered collections, the

element at position 1 will be accessed first, then the element

at position 2, and so on. In sorted collections, the elements

are accessed according to the ordering relation provided for

the element type. In collections that are not ordered the

elements are accessed in an arbitrary order. Each element is

accessed exactly once.

iterator class. A class that provides iteration functions.

I/O Stream Library. A class library that provides the

facilities to deal with many varieties of input and output.

K
key access. A property that allows elements to be accessed

by matching keys.

key bag. An unordered flat collection that uses keys and can

contain duplicate elements.

key collection. (1) An abstract class that has the property of

key access. (2) In general, any collection that uses keys.

key equality. A relation that determines whether two keys

are equal.

key() function. When used on a flat collection, a function

that returns a reference to the key of an element.

key-type function. Any of several functions of an element

type, that are used by the Collection Class Library member

functions to manipulate the keys of a class.

key set. An unordered flat collection that uses keys and

does not allow duplicate elements.

key sorted bag. A sorted flat collection that uses keys and

allows duplicate elements.

key sorted collection. An abstract class with the properties

of key equality and sorted elements.

key sorted set. A sorted flat collection that uses keys and

does not allow duplicate elements.

 Glossary 593

keyword ¹multibyte character set (MBCS)

keyword. (1) A predefined word reserved for the C or C++
language that you cannot use as an identifier. (2) A symbol

that identifies a parameter.

L
last element. The element accessed last in an iteration over

a collection. Each collection has its own definition for last

element. For example, the last element of a sorted set is the

element with the largest value.

latched. The state of a button. A button in its latched state

is held in its pressed position until the user clicks on it to

release (unlatch) it.

leaves. In a tree, nodes without children. Synonymous with

terminals.

library. (1) A collection of functions, function calls,

subroutines, or other data. (2) A set of object modules that

can be specified in a link command.

linkage editor. Synonym for linker.

linked implementation. An implementation in which each

element contains a reference to the next element in the

collection. Pointer chains are used to access elements in

linked implementations. Linked implementations are also

called linked list implementations.

linked sequence. A sequence that uses a linked

implementation.

linker. A program that resolves cross-references between

separately compiled object modules and then assigns final

addresses to create a single executable program.

locale. The definition of the subset of a user's environment

that depends on language and cultural conventions.

lvalue. An expression that represents an object that can be

both examined and altered.

M
manipulator. A value that can be inserted into streams or

extracted from streams to affect or query the behavior of the

stream.

mask. A pattern of bits or characters that controls the

keeping, deleting, or testing of portions of another pattern of

bits or characters.

MBCS. See multibyte character set

member. Data, functions, or types contained in classes,

structures, or unions.

member function. An operator or function that is declared

as a member of a class. A member function has access to the

private and protected data members and member functions of

objects of its class.

message. A request from one object that the receiving object

implement a method. Because data is encapsulated and not

directly accessible, a message is the only way to send data

from one object to another. Each message specifies the name

of the receiving object, the method to be implemented, and

any parameters the method needs for implementation.

method. Synonym for member function.

MIDI. Musical Instrument Digital Interface. A standard

used in the music industry for interfacing digital musical

instruments.

mix. (1) An attribute that determines how the foreground of

a graphic primitive is combined with the existing color of

graphics output. Also known as foreground mix. Contrast

with background mix. (2) The combination of audio or

video sources during postproduction.

mixer. A device used to simultaneously combine and blend

several inputs into one or two outputs.

mode. A collection of attributes that specifies a file's type

and its access permissions.

motion video. Video that displays real motion.

mount. (1) To place a data medium in a position to operate.

(2) To make recording media accessible.

Moving Pictures Experts Group (MPEG). (1) A group

that is working to establish a standard for compressing and

storing motion video and animation in digital form. (2) The

compression standard of video and audio data that is stored

on mass media.

MPEG. Moving Pictures Experts Group.

multibyte character set (MBCS). A character set whose

characters consist of more than 1 byte. Used in languages

such as Japanese, Chinese, and Korean, where the 256

possible values of a single-byte character set are not sufficient

to represent all possible characters.

594 VisualAge C++ Open Class Library Reference

multimedia ¹ordering relation

multimedia. Computer-controlled presentations combining

any of the following: text, graphics, animation, full-motion

images, still video images, and sound.

multiple inheritance. (1) An object-oriented programming

technique implemented in C++ through derivation, in which

the derived class inherits members from more than one base

class. (2) The structuring of inheritance relationships among

classes so a derived class can use the attributes, relationships,

and functions used by more than one base class.

See also inheritance and class lattice.

multitasking. A mode of operation that allows concurrent

performance or interleaved execution of more than one task

or program.

multithread. Pertaining to concurrent operation of more

than one path of execution within a computer.

N
n-ary tree. A tree that has an upper limit, n, imposed on the

number of children allowed for a node.

National Television Standard Committee (NTSC). (1) A

committee that sets the standard for color television

broadcasting and video in the United States (currently in use

also in Japan). (2) The standard set by the NTSC committee

(the NTSC standard).

native. The rendering mechanism and format (RMF) that

best represents the object and is the best one for rendering.

For example, a native of Cincinnati understands the streets in

the area better than someone who has just moved there.

Therefore, a Cincinnati native can get from point A to point

B quicker than a newcomer. Likewise, a native RMF can get

the data transferred from point A to point B more efficiently

than the additional RMFs. We can use additional RMFs

when we cannot use the native, or optimal, approach.

nested class. A class defined within the scope of another

class.

new. (1) A C++ keyword identifying a free storage

allocation operator. (2) A C++ operator used to create class

objects.

new-line character. A control character that causes the print

or display position to move to the first position on the next

line. This control character is represented by \n in the C

language.

node. In a tree structure, a point at which subordinate items

of data originate.

NTSC. National Television Standard Committee.

NTSC format. The specifications for color television as

defined by the NTSC, which include: (a) 525 scan lines, (b)

broadcast bandwidth of 4 megaHertz, (c) line frequency of

15.75 kiloHertz, (d) frame frequency of 30 frames per

second, and (e) color subcarrier frequency of 3.58 megaHertz.

null character (\0). The ASCII or EBCDIC character with

the hex value 00 (all bits turned off).

O
object. (1) A collection of data and member functions that

operate on that data, which together represent a logical entity

in the system. In object-oriented programming, objects are

grouped into classes that share common data definitions and

functions. Each object of the class is said to be an instance

of the class. (2) Each object has the same properties,

attributes, and member functions as other objects of the same

class, though it has unique values has unique values assigned

to assigned to its attributes.

object-oriented programming. A programming approach

based on the concepts of data abstraction and inheritance.

Unlike procedural programming techniques, object-oriented

programming concentrates on what data objects comprise the

problem and how they are manipulated, not on how

something is accomplished.

operation class. A class that defines all required element

and key operations required by a specific collection

implementation.

operator function. An overloaded operator that is either a

member of a class or that takes at least one argument that is a

class type or a reference to a class type. See overloading.

optical reflective disc. An optical videodisc that is read by

means of the reflection of a laser beam from the shiny

surface on the disc.

ordered collection. (1) An abstract class that has the

property of ordered elements. (2) In general, any collection

that has its elements arranged so that there is always a first

element, last element, next element, and previous element.

ordering relation. A property that determines how the

elements are sorted. Ascending order is an example of an

ordering relation.

 Glossary 595

overflow ¹profiling

overflow. A condition that occurs when a portion of the

result of an operation exceeds the capacity of the intended

unit of storage.

overloading. An object-oriented programming technique

where one or more function declarations are specified for a

single name in the same scope.

owner window. A window similar to a parent window, but

it does not affect the behavior or appearance of the window.

The owner coordinates the activity of a window.

P
pad. To fill unused positions in a field with data, usually

0’s, 1’s, or blanks.

parameter declaration. A description of a value that a

function receives. A parameter declaration determines the

storage class and the data type of the value.

parent node. A node to which one or more other nodes are

subordinate.

parent window. A window that provides the child window

information on how and where to draw it. The parent

window also defines the relationship that the child window

has with other windows in the system.

pause. To temporarily halt the medium. The halted visual

should remain displayed but no audio should be played.

pel. The smallest area of a display screen capable of being

addressed and switched between visible and invisible states.

Synonym for pixel and picture element.

picture element. Synonym for pel.

pitch. The ability to change the key or keynote of the

sound. For example, in music, the different pitches of

people’s voices are soprano, alto, tenor, baritone, and bass,

arranged from the highest to lowest pitch.

pixel. Picture element. Synonym for pel.

pointer. A variable that holds the address of a data object or

function.

pointer class. A class that implements pointers.

pointer to member. An operator used to access the address

of nonstatic members of a class.

polymorphic function. A function that can be applied to

objects of more than one data type. C++ implements

polymorphic functions in two ways:

1. Overloaded functions (calls are resolved at compile time)

2. Virtual functions (calls are resolved at run time)

polymorphism. The technique of taking an abstract view of

an object or function and using any concrete objects or

arguments that are derived from this abstract view.

positioning property. The property of an element that is

used to position the element in a collection. For example, the

value of the key may be used as the positioning property.

precondition. A condition that a function requires to be true

when it is called.

predicate function. A function that returns an IBoolean

value of true or false. (IBoolean is an integer-represented

Boolean type.)

preparation. Any activity that the source performs before

rendering the data. For example, the drag item may require

that the source create a secondary thread for the source

rendering to take place in. The system remains responsive to

users so that they can do other tasks.

preprocessor. A phase of the compiler that examines the

source program for preprocessor statements, which are then

executed, resulting in the alteration of the source program.

preroll. To prepare a device to begin a playback or

recording function with minimal delay.

primitive. See graphic primitive.

primitive attribute. A specifiable characteristic of a graphic

primitive. See graphic attributes.

priority queue. A queue that has a priority assigned to its

elements. When accessing elements, the element with the

highest priority is removed first. A priority queue has a

largest-in, first-out behavior.

private. Pertaining to a class member that is accessible only

to member functions and friends of that class.

process. A program running under OS/2, along with the

resources associated with it (memory, threads, file system

resources, and so on).

profiling. The process of generating a statistical analysis of

a program that shows processor time and the percentage of

program execution time used by each procedure in the

program.

596 VisualAge C++ Open Class Library Reference

program ¹SMPTE time code

program. (1) One or more files containing a set of

instructions conforming to a particular programming language

syntax. (2) A self-contained, executable module. Multiple

copies of the same program can be run in different processes.

property function. A function that is used to determine

whether the element it is applied to has a given property or

characteristic. A property function can be used, for example,

to remove all elements with a given property.

protected. Pertaining to a class member that is only

accessible to member functions and friends of that class, or to

member functions and friends of classes derived from that

class.

prototype. A function declaration or definition that includes

both the return type of the function and the types of its

arguments.

public. Pertaining to a class member that is accessible to all

functions.

pure virtual function. A virtual function that has a function

initializer of the form = 0;.

Q
queue. A sequence with restricted access in which elements

can only be added at the back end (or bottom) and removed

from the front end (or top). A queue is characterized by

first-in, first-out behavior and chronological order.

R
reference class. A class that links a concrete class to an

abstract class. Reference classes make polymorphism

possible with the Collection Classes.

relation. An unordered flat collection class that uses keys,

allows for duplicate elements, and has element equality.

renderer. An object that renders data using a particular

mechanism, such as using files or shared memory. It

contains definitions of supported rendering mechanisms and

formats and types. Renderers are maintained positionally

(1-based).

rendering. The transfer or re-creation of the dragged object

from the source window to the target window.

rendering format. Identifies the actual format of the data

being rendered in a direct manipulation operation.

rendering mechanism. Identifies the actual format of the

data being rendered in a direct manipulation operation.

resource file. A file that contains data used by an

application, such as text strings and icons.

returned element. An element returned by a function as the

return value.

RGB. Red, green, blue. A method of processing color

images according to their red, green, and blue color content.

RMFs. Rendering mechanisms and formats.

root. A node that has no parent. All other nodes of a tree

are descendants of the root.

S
samples-per-second. The number of times per second that

the audio card records data from the audio input. For

example, 44 kiloHertz is CD quality; 22 kiloHertz is FM

music quality; and 11 kiloHertz is voice quality.

SBCS. See single-byte character set

scan. To search backward and forward at high speed on a

CD audio device. Scanning is analogous to fast forwarding.

scope. That part of a source program in which an object is

defined and recognized.

scope operator (::). An operator that defines the scope for

the argument on the right. If the left argument is blank, the

scope is global; if the left argument is a class name, the

scope is within that class. Also called a scope resolution

operator.

scroll increment. The number by which the current value of

the circular slider is incremented or decremented when a user

presses one of the circular slider control buttons.

sequence. A sequentially ordered flat collection.

sequential collection. An abstract class with the property of

sequentially ordered elements.

siblings. All the children of a node are said to be siblings of

one another.

single-byte character set (SBCS). A set of characters in

which each character is represented by a 1-byte code.

SMPTE time code. A frame-numbering system developed

by SMPTE that assigns a number to each frame of video.

 Glossary 597

sorted bag ¹thread

The 8-digit code is in the form HH:MM:SS:FF (hours,

minutes, seconds, frame number). The numbers track elapsed

hours, minutes, seconds, and frames from any chosen point.

sorted bag. A sorted flat collection that allows duplicate

elements.

sorted collection. (1) An abstract class with the property of

sorted elements. (2) In general, any collection with sorted

elements.

sorted map. A sorted flat collection with key and element

equality.

sorted relation. A sorted flat collection that uses keys, has

element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element equality.

sound track. Synonymous with audio track.

sprite. A small graphic that can be moved independently

around the screen, producing animated effects.

stack. A data structure in which new elements are added to

and removed from the top of the structure. A stack is

characterized by Last-In-First-Out (LIFO) behavior.

standard error. An output stream usually intended to be

used for diagnostic messages.

standard input. An input stream usually intended to be

used for primary data input. Standard input comes from the

keyboard unless redirection or piping is used, in which case

standard input can be from a file or the output from another

command.

standard output. An output stream usually intended to be

used for primary data output. When programs are run

interactively, standard output usually goes to the display

unless redirection or piping is used, in which case standard

output can go to a file or to another command.

step backward. In multimedia applications, to move the

medium backward one frame or segment at a time.

step forward. In multimedia applications, to move the

medium forward one frame or segment at a time.

step frame. A function of devices such as digital video and

videodisc players that enables a user to move frame-by-frame

in either direction.

stream. (1) A continuous stream of data elements being

transmitted, or intended for transmission, in character or

binary-digit form, using a defined format. (2) A file access

object that allows access to an ordered sequence of

characters, as described by the ISO C standard. A stream

provides the additional services of user-selectable buffering

and formatted input and output.

stream buffer. A stream buffer is a buffer between the

ultimate consumer, ultimate producer, and the I/O Stream

Library functions that format data. It is implemented in the

I/O Stream Library by the streambuf class and the classes

derived from streambuf.

string. A contiguous sequence of characters.

structure. A construct that contains an ordered group of

data objects. Unlike an array, the data objects within a

structure can have varied data types.

subclass. See derived class.

subscript. One or more expressions, each enclosed in

brackets, that follow an array name. A subscript refers to an

element in an array.

subtree. A tree structure created by arbitrarily denoting a

node to be the root node in a tree. A subtree is always part

of a whole tree.

superclass. See base class and abstract class.

superset. Given two sets A and B, A is a superset of B if

and only if all elements of B are also elements of A. That is,

A is a superset of B if B is a subset of A.

T
tabular implementation. An implementation that stores the

location of elements in tables. Elements in a tabular

implementation are accessed by using indices to arrays.

tabular sequence. A sequence that uses a tabular

implementation.

template. A family of classes or functions where the code

remains invariant but operates with variable types.

terminals. Synonym for leaves.

this. A C++ keyword that identifies a special type of pointer

in a member function, one that references the class object

with which the member function was invoked.

this collection. The collection to which a function is

applied.

thread. A unit of execution within a process.

598 VisualAge C++ Open Class Library Reference

throw expression ¹video graphics adapter (VGA)

throw expression. An argument to the C++ exception being

thrown.

time code. See SMPTE time code.

tool bar. The area under the title bar that displays the tools

available.

transparency. Refers to when a selected color on a graphics

screen is made transparent to allow the video behind it to

become visible.

transparent color. (1) A clear color used to indicate the

part of the bitmap that is not drawn for the bitmap. The area

under the bitmap is not overpainted for areas of the bitmap

that are set to the transparent color. (2) Video information is

considered as being present on the video plane that is

maintained behind the graphics plane. When an area on the

graphics plane is painted with a transparent color, the video

information in the video plane is made visible.

trap. An unprogrammed conditional jump to a specified

address that is automatically activated by hardware. A

recording is made of the location from which the jump

occurred.

treble. (1) The upper half of the whole vocal or

instrumental tonal range. (2) The higher portion of the audio

frequency range in sound recording.

tree. A hierarchical collection of nodes that can have an

arbitrary number of references to other nodes. A unique path

connects every two nodes.

true and additional. The most accurate or most descriptive

(primary) type of an object (true) and the other or secondary

types (additional). For example, if the object is a text file, its

true type is text; if the file was a C source code file, its true

type is C code.

try block. A block in which a known C++ exception is

passed to a handler.

typed implementation class. A class that implements a

concrete class and provides an interface that is specific to a

given element type. This interface allows the compiler to

verify that, for example, integers cannot be added to a set of

strings.

typeless implementation class. A class that implements a

concrete class and provides an interface that is not specific to

a given element type.

U
ultimate consumer. The target of data in an I/O operation.

An ultimate consumer can be a file, a device, or an array of

bytes in memory.

ultimate producer. The source of data in an I/O operation.

An ultimate producer can be a file, a device, or an array of

byes in memory.

unbounded collection. A collection that has no upper limit

on the number of elements it can contain.

undefined cursor. A cursor that may or may not be valid,

and that may or may not refer to a different element of the

collection from the element it referred to before the function

call that resulted in its becoming undefined. An undefined

cursor may refer to no element of the collection, and still be

a valid cursor.

underflow. (1) A condition that occurs when the result of

an operation is less than the smallest possible nonzero

number. (2) Synonym for arithmetic underflow, monadic

operation.

union. (1) Structures that can contain different types of

objects at different times. Only one of the member objects

can be stored in a union at any time. (2) Given the sets A

and B, all elements of A, B, or both A and B.

unique collection. A collection in which the value of an

element only occurs once; that is, there are no duplicate

elements.

unload. To eject the medium from the device.

unordered collection. A collection that has no order to its

elements.

V
VCR. Videocassette recorder.

VGA. Video graphics adapater.

video. Pertaining to the portion of recorded information that

can be seen.

video attributes. The standard video attributes are:

brightness, contrast, freeze, hue, saturation, and sharpness.

video graphics adapter (VGA). A graphics controller for

color displays. The pel resolution of the video graphics

adapter is 4:4.

 Glossary 599

videocassette recorder (VCR) ¹(::) (double colon)

videocassette recorder (VCR). A device for recording or

playing back videocassettes.

videodisc. A disc on which programs have been recorded

for playback on a computer or a television set; a recording on

a videodisc. The most common format in the United States

and Japan is an NTSC signal recorded on the optical

reflective format.

videodisc player. A device that provides video playback for

prerecorded videodiscs.

virtual function. A function of a class that is declared with

the keyword virtual. The implementation that is executed

when you make a call to a virtual function depends on the

type of the object for which it is called. This is determined

at run time.

volatile. An attribute of a data object that indicates the

object is changeable beyond the control or detection of the

compiler. Any expression referring to a volatile object is

evaluated immediately, for example, assignments.

volume. The intensity of sound. A volume of 0 is minimum

volume. A volume of 100 is maximum volume.

W
white space. Space characters, tab characters, form feed

characters, and new-line characters.

wide character. A character whose range of values can

represent distinct codes for all members of the largest

extended character set specified among the supporting locales.

Numerics
24-bit color. A digital standard that uses 24 bits of

information to describe each color pixel, providing up to 16.7

million colors in one image (the highest digital standard

currently available).

8-bit color. A digital standard that uses 8 bits of

information to describe each color pixel, providing up to 256

colors in one image (the standard for VGA displays).

Special Characters
(::) (double colon). Scope operator. An operator that

defines the scope for the argument on the right. If the left

argument is blank, the scope is global; if the left argument is

a class name, the scope is within that class. Also called a

scope resolution operator.

600 VisualAge C++ Open Class Library Reference

 Bibliography

This bibliography lists the publications that make up the IBM VisualAge C++ library and publications of related IBM products

referenced in this book. The list of related publications is not exhaustive but should be adequate for most VisualAge C++ users.

The IBM VisualAge C++ Library

The following books are part of the IBM VisualAge C++

library.

¹ Read Me First!, S25H-6956

¹ Welcome to VisualAge C++, S25H-6957

 ¹ User's Guide, S25H-6961

 ¹ Programming Guide, S25H-6958

¹ Visual Builder User's Guide, S25H-6960

¹ Visual Builder Parts Reference, S25H-6967

¹ Building Visual Builder Parts for Fun and Profit,

S25H-6968

¹ Open Class Library User's Guide, S25H-6962

¹ Open Class Library Reference, S25H-6965

 ¹ Language Reference, S25H-6963

¹ C Library Reference, S25H-6964

The IBM VisualAge C++
BookManager Library

The following documents are available in VisualAge C++ in

BookManager format.

¹ Read Me First!, S25H-6956

¹ Welcome to VisualAge C++, S25H-6957

 ¹ User's Guide, S25H-6961

 ¹ Programming Guide, S25H-6958

¹ Visual Builder User's Guide, S25H-6960

¹ Visual Builder Parts Reference, S25H-6967

¹ Building Visual Builder Parts for Fun and Profit,

S25H-6968

¹ Open Class Library User's Guide, S25H-6962

¹ Open Class Library Reference, S25H-6965

 ¹ Language Reference, S25H-6963

¹ C Library Reference, S25H-6964

C and C++ Related Publications

¹ Portability Guide for IBM C, SC09-1405

¹ American National Standard for Information Systems /

International Standards Organization — Programming

Language C (ANSI/ISO 9899-1990[1992])

¹ Draft Proposed American National Standard for

Information Systems — Programming Language C++

(X3J16/92-0060)

IBM OS/2 2.1 Publications

The following books describe the OS/2 2.1 operating system

and the Developer's Toolkit 2.1.

¹ OS/2 2.1 Using the Operating System, S61G-0703

¹ OS/2 2.1 Installation Guide, S61G-0704

¹ OS/2 2.1 Quick Reference, S61G-0713

¹ OS/2 2.1 Command Reference, S71G-4112

¹ OS/2 2.1 Information and Planning Guide, S61G-0913

¹ OS/2 2.1 Keyboard and Codepages, S71G-4113

¹ OS/2 2.1 Bidirectional Support, S71G-4114

¹ OS/2 2.1 Book Catalog, S61G-0706

¹ Developer's Toolkit for OS/2 2.1: Getting Started,

S61G-1634

IBM OS/2 3.0 Publications

¹ User's Guide to OS/2 Warp, G25H-7196-01

The following books make up the OS/2 3.0 Technical Library

(G25H-7116).

¹ Control Program Programming Guide, G25H-7101

¹ Control Program Programming Reference, G25H-7102

¹ Presentation Manager Programming Guide - The Basics,

G25H-7103

¹ Presentation Manager Programming Guide - Advanced

Topics, G25H-7104

 Copyright IBM Corp. 1993, 1995 601

¹ Presentation Manager Programming Reference,

G25H-7105

¹ Graphics Programming Interface Programming Guide,

G25H-7106

¹ Graphics Programming Interface Programming

Reference, G25H-7107

¹ Workplace Shell Programming Guide, G25H-7108

¹ Workplace Shell Programming Reference, G25H-7109

¹ Information Presentation Facility Programming Guide,

G25H-7110

¹ OS/2 Tools Reference, G25H-7111

¹ Multimedia Application Programming Guide, G25H-7112

¹ Multimedia Subsystem Programming Guide, G25H-7113

¹ Multimedia Programming Reference, G25H-7114

¹ REXX User's Guide, S10G-6269

 ¹ REXX Reference, S10G-6268

 Multimedia Books

The following books are available as part of IBM Multimedia

Presentation Manager/2 Version 1.1 (MMPM/2). The IBM

User Interface Class Library multimedia classes encapsulate

and extend many of the MMPM/2 functions.

¹ The OS/2 Multimedia Advantage, S71G-2220

¹ Application Programming Guide, S71G-2221

 ¹ Programming Reference, S71G-2222

¹ Subsystem Development Guide, S71G-2223

¹ Guide to Multimedia User Interface Design, S41G-2922

Other Books You Might Need

The following list contains the titles of IBM books that you

might find helpful. These books are not part of the

VisualAge C++ or OS/2 libraries.

BookManager READ/2 Publications

¹ IBM BookManager READ/2: General Information,

GB35-0800

¹ IBM BookManager READ/2: Getting Started and Quick

Reference, SX76-0146

¹ IBM BookManager READ/2: Displaying Online Books,

SB35-0801

¹ IBM BookManager READ/2: Installation, GX76-0147

 Non-IBM Publications

Many books have been written about the C++ language and

related programming topics. The authors use varying

approaches and emphasis. The following is a sample of some

non-IBM C++ publications that are generally available. This

sample is not an exhaustive list. IBM does not specifically

recommend any of these books, and other C++ books may be

available in your locality.

¹ The Annotated C++ Reference Manual by Margaret A.

Ellis and Bjarne Stroustrup, Addison-Wesley Publishing

Company.

¹ C++ Primer by Stanley B. Lippman, Addison-Wesley

Publishing Company.

¹ Object-Oriented Design with Applications by Grady

Booch, Benjamin/Cummings.

¹ Object-Oriented Programming Using SOM and DSOM by

Christina Lau, Van Nostrand Reinhold.

¹ OS/2 C++ Class Library: Power GUI Programming with

C Set ++ by Kevin Leong, William Law, Robert Love,

Hiroshi Tsuji, and Bruce Olson, Van Nostrand Reinhold.

Suggested Reading for Collection Classes

These books contain explanations of data structures that may

help you understand the data structures in the Collection

Classes:

¹ Data Structures and Algorithms by Aho, Hopcroft, and

Ullman, Addison-Wesley Publishing Company.

¹ The Art of Computer Programming, Vol. 3: Sorting and

Searching, D.E. Knuth, Addison-Wesley Publishing

Company.

¹ C++ Components and Algorithms by Scott Robert Ladd,

M&T Publishing Inc.

¹ A Systematic Catalogue of Reusable Abstract Data Types

by Juergen Uhl and Hans Albrecht Schmit, Springer

Varlag.

602 VisualAge C++ Open Class Library Reference

 Index

A
abs() complex function 13

abstract Collection Classes

collection 283

equality collection 285

equality key collection 287

equality key sorted collection 289

equality sorted collection 291

key collection 293

key sorted collection 295

ordered collection 297

sequential collection 299

sorted collection 301

IAccessError class 319

add() function

flat collections 103

IObserverList class 414

IPersistentObject 554

IPointArray class 436

addAllFrom() Collection Class function 104

addAsChild() tree function 252

addAsFirst() Collection Class function 105

addAsLast() Collection Class function 105

addAsNext() Collection Class function 106

addAsPrevious() Collection Class function 106

addAsRoot() tree function 253

addAtPosition() Collection Class function 107

addDifference() Collection Class function 107

addIntersection() Collection Class function 108

addLocation() IException function 383

addObserver() function

INotifier class 410

IStandardNotifier class 465

addOrReplaceElementWithKey() Collection Class

function 109

addRef() function

IBuffer class 339

IRefCounted class 453

addUnion() Collection Class function 110

adjustArg() I0String function 317

adjustResult() I0String function 317

allElementsDo() function

flat collections 110—111

tree collections 253—254

allocate() function

allocate() function (continued)

IBuffer class 344

IDBCSBuffer class 362

streambuf class 80

allSubtreeElementsDo() tree function 253—254

anyElement() Collection Class function 112

appendText() IException function 384

applyBitOp() IString function 495

area() IRectangle function 444

arg() complex function 13

arg1, arg2 c_exception arguments 15

array initialization in complex class 9

array stream buffer classes 87—90

asCDATE() IDate function 353

asCTIME() ITime function 530

asDebugInfo() function

IBase class 324

IBuffer class 334

IPair class 426

IRectangle class 444

IString class 475

IVBase class 542

asDouble() IString function 492

asExtendedUnsignedLong() IBitFlag function 331

asInt() IString function 492

asPOINTL() IPoint function 432

asRECTL() IRectangle function 444

asSeconds() ITime function 530

IAssertionFailure class 321

assertParameter() IException function 385

assignment operator

See operator =

asSIZEL() ISize function 461

asString() function

IBase class 324

IDate class 354

IPair class 426

IRectangle class 444

IString class 475

ITime class 529

IVBase class 542

asUnsigned() IString function 492

asUnsignedLong() IBitFlag function 331

AT&T C++ Language System Release 1.2

overflow() 82

setbuf() 84

 Copyright IBM Corp. 1993, 1995 603

AT&T C++ Language System Release 1.2 (continued)

streambuf constructor 75

underflow() 85

attach() filebuf function 22

attach() fstreambase function 26

attachAsChild() tree function 255

attachAsRoot() tree function 256

attachSubtreeAsChild() tree function 255

attachSubtreeAsRoot() tree function 256

authentication() IDatastore function 551

B
b2c() IString function 472

b2d() IString function 472

b2x() IString function 472

bad() ios function 40

bag 133—137

IBase class 323

IBase::Version class 327

base() streambuf function 77

based-on concept in Collection Class Library

functions affected by

addAsFirst() 105

addAsLast() 105

addAsNext() 106

addAsPrevious() 106

addAtPostion() 107

addOrReplaceElementWithKey() 109

enqueue() 116

isBounded() 117

isFull() 118

locateOrAddElementWithKey() 122

maxNumberOfElements() 123

push() 124

general precondition 103, 104

baseLibrary() IException function 386

bitalloc() ios function 39

IBitFlag class 329

blen() streambuf function 80

IBoolean type 97

bottom() IRectangle function 449

bottomCenter() IRectangle function 449

bottomLeft() IRectangle function 449

bottomRight() IRectangle function 449

IBuffer class 333

buffer() IString function 497

built-in manipulators

istream class 55

ostream class 67

C
c_exception class 15—18

c2b() IString function

c2d() IString function

c2x() IString function

center() function

IBuffer class 334

IDBCSBuffer class 362

IRectangle class 450

IString class 475

centerAt() IRectangle function 445

centeredAt() IRectangle function 445

centerXCenterY() IRectangle function 448

centerXMaxY() IRectangle function 448

centerXMinY() IRectangle function 448

change() function

I0String class 310

IBuffer class 334

IString class 475, 495

character conversion for numeric input 50

charLength() IDBCSBuffer function 368

charType() function

I0String class 312

IBuffer class 337

IDBCSBuffer class 364

IString class 488

checkAddition() IBuffer function 338

checkMultiplication() IBuffer function 338

children of a tree node 245

CLASS_BASE_NAME 97

CLASS_NAME 97

className() function

IBuffer class 345

IDBCSBuffer class 368

clear() ios function 40

ICLibErrorInfo class 347

CLibrary() IException function 386

close() function

filebuf class 22

fstreambase class 26

collection

conditions for equality 102

collection abstract class 283

Collection Class Library

abstract classes

collection 283

equality collection 285

equality key collection 287

equality key sorted collection 289

equality sorted collection 291

604 VisualAge C++ Open Class Library Reference

Collection Class Library (continued)

abstract classes (continued)

key collection 293

key sorted collection 295

ordered collection 297

sequential collection 299

sorted collection 301

concrete classes

bag collection 133

deque collection 139

equality sequence c ollection 145

heap collection 149

key bag collection 153

key set collection 159

key sorted bag collection 165

key sorted set collection 171

map collection 181

priority queue collection 189

queue collection 193

relation collection 197

sequence collection 201

set collection 207

sorted bag collection 213

sorted map collection 219

sorted relation collection 225

sorted set collection 229

stack collection 237

cursor classes 267

iterator classes 275

pointer classes 277

tree cursor classes 271

commit() IDatastore function 551

compare() function

Collection Class Library 112

IBuffer class 334

complex class 7—14

constants 7

conversion functions 13

error handling 15

input operator 11

mathematical operators 9

output operator 11

Complex Mathematics Library 7—18

complex_error() Complex Mathematics function 16

conj() complex function 13

conjugates of complex numbers 13

connect() IDatastore function 551

IConnectFailed class 559

constant iterator class 275

constructors

I0String class 308

IAccessError class 319

IAssertionFailure class 321

IBitFlag class 332

IBuffer class 344

ICLibErrorInfo class 348

Collection Class Library

flat collections 101

complex class 8

IConnectFailed class 559

cursor classes 268

IDatastore class 550

IDatastoreAccessError class 560

IDatastoreAdaptorException class 561

IDatastoreConnectionInUse class 562

IDatastoreConnectionNotOpen class 563

IDatastoreLogoffFailed class 564

IDatastoreLogonFailed class 565

IDate class 353

IDBCSBuffer class 367

IDeviceError class 371

IDisconnectError class 565

IDSAccessError class 567

IErrorInfo class 375

IException class 382

IExceptionLocation class 390

filebuf class 22

flat collections 101

fstream class 26

IGUIErrorInfo class 392

IException::TraceFn class 388

ifstream class 28

IInvalidParameter class 395

IInvalidRequest class 397

iostream class 45

iostream_withassign class 45

istream class 47

istream_withassign class 56

istrstream class 89

IMessageText class 400

INotificationEvent class 403

INotifier class 408

IObserver class 412

IObserverList class 413

IObserverList::Cursor class 417

ofstream class 29

ostream class 61

ostream_withassign class 68

ostrstream class 90

 Index 605

constructors (continued)

IOutOfMemory class 419

IOutOfSystemResource class 421

IOutOfWindowResource class 423

IPair class 426

IPersistentObject class 554

IPoint class 431

IPointArray class 435

IPOManager class 556

IRange class 439

IRectangle class 443

IRefCounted class 454

IReference class 456

IResourceExhausted class 459

ISize class 461

IStandardNotifier class 464

stdiobuf class 69

stdiostream class 70

IString class 473

IStringParser class 512

IStringParser::SkipWords class 513

IStringTest class 516, 517

IStringTestMemberFn class 520

strstream class 88

strstreambuf class 91

ISystemErrorInfo class 524

ITime class 529

ITrace class 535

tree class 251

tree cursor class 271

IXLibErrorInfo class 544

contains() function

flat collections 113

IRectangle class 451

containsAllFrom() Collection Class function 113

containsAllKeysFrom() Collection Class function 113

containsElementWithKey() Collection Class function 113

contents() IBuffer function 337

conversion functions in complex class 13

coord1() IPair function 427

coord2() IPair function 427

copy constructors

flat collections 101

tree class 251

copy() function

flat collections 113

IBuffer class 335

IString class 477

tree class 256

copySubtree() tree function 256

cos() complex function 12

cosh() complex function 12

cursor classes 267—270

D
d2b() IString function 486

d2c() IString function 486

d2x() IString function 486

Data Access Builder C++ Classes

IDatastore class 549

IPersistentObject class 553

IPOManager class 556

Data Access Builder exception classes

IConnectFailed class 559

IDatastoreAccessError class 560

IDatastoreAdaptorException class 561

IDatastoreConnectionInUse class 562

IDatastoreConnectionNotOpen class 563

IDatastoreLogoffFailed class 564

IDatastoreLogonFailed class 564

IDisconnectError class 565

IDSAccessError class 566

data IStringTest data member 517

Data Type and Exception classes

I0String 307

IAccessError 319

IAssertionFailure 321

IBase 323

IBase::Version 327

IBitFlag 329

IBuffer 333

ICLibErrorInfo 347

IDate 351

IDBCSBuffer 361

IDeviceError 371

IErrorInfo 373

IException 379

IException::TraceFn 387

IExceptionLocation 389

IGUIErrorInfo 391

IInvalidParameter 395

IInvalidRequest 397

IMessageText 399

INotificationEvent 403

INotifier 407

IObserver 411

IObserverList 413

IObserverList::Cursor 417

606 VisualAge C++ Open Class Library Reference

Data Type and Exception classes (continued)

IOutOfMemory 419

IOutOfSystemResource 421

IOutOfWindowResource 423

IPair 425

IPoint 431

IPointArray 435

IRange 439

IRectangle 441

IRefCounted 453

IReference 455

IResourceExhausted 459

ISize 461

IStandardNotifier 463

IString 469

IStringEnum 501

IStringParser 503

IStringParser::SkipWords 513

IStringTest 515

IStringTestMemberFn 519

ISystemErrorInfo 523

ITime 527

ITrace 533

IVBase 541

IXLibErrorInfo 543

data() IString function 498

Database Access SOM Classes 569

IDatastoreAccessError class 560

IDatastoreAdaptorException class 561

IDatastoreConnectionInUse class 562

IDatastore class 549

IDatastoreConnectionNotOpen class 563

IDatastoreLogoffFailed class 564

IDatastoreLogonFailed class 564

datastoreName() IDatastore function 552

IDate class 351

dayName() IDate function 354, 355

dayOfMonth() IDate function 354

dayOfWeek() Date function 354

dayOfYear() IDate function 354

daysInMonth() IDate function 356

daysInYear() IDate function 356

IDBCSBuffer class 361

dbcsTable IBuffer data member

dbp() streambuf function 80

ios::dec 34, 44

defaultBuffer() function

IBuffer class 337

IString class 498

degree of a tree node 245

delete() IPersistentObject function 554

deleteId() IStandardNotifier function 466

deque 139—144

dequeue() Collection Class function 114

destructors

I0String class 310

IBuffer class 344

ICLibErrorInfo class 348

complex class 8

IDatastore class 551

IDBCSBuffer class 368

IErrorInfo class 375

IException class 382

filebuf class 22

flat collections 101

IGUIErrorInfo class 393

istrstream class 89

IMessageText class 401

INotificationEvent class 404

INotifier class 408

IObserver class 411

IObserverList class 413

IObserverList::Cursor class 417

ostrstream class 90

IPersistentObject class 554

IPointArray class 436

IPOManager class 556

IRefCounted class 454

IReference class 456

IStandardNotifier class 464

stdiobuf class 70

IString class 475

IStringParser class 506

IStringTest class 516

strstream class 88

strstreambuf class 92

ISystemErrorInfo class 524

ITrace class 535

tree class 252

IVBase class 542

IXLibErrorInfo class 544

detach() function

filebuf class 22

fstreambase class 26

IDeviceError class 371

difference

definition for bags 133

definition for flat collections 114

 Index 607

differenceWith() Collection Class function 114

disableNotification() function

INotifier class 408

IStandardNotifier class 464

disableTrace() ITrace function 536

disableWriteLineNumber() ITrace function 536

disableWritePrefix() ITrace function 536

disconnect() IDatastore function 552

IDisconnectError class 565

dispatchNotificationEvent() IObserver function 412

distanceFrom() IPair function 429

doallocate() function

streambuf class 82

strstreambuf class 93

dotProduct() IPair function 429

IDSAccessError class 566

dynamic mode 88, 91

E
e (mathematical constant) 7

eback() streambuf function 77

ebuf() streambuf function 78

egptr() streambuf function 78

element() function

cursor classes 268

tree cursor class 272

elementAt() function

flat collection classes 115

IObserverList class 414

tree class 257

elementAtPosition() Collection Class function 115

elementWithKey() Collection Class function 115—116

enableNotification() function

INotifier class 408

IStandardNotifier class 464

enableTrace() ITrace function 536

enableWriteLineNumber() ITrace function 536

enableWritePrefix() ITrace function 536

endl manipulator 67

ends manipulator 67

enqueue() Collection Class function 116

eof() ios function 40

epptr() streambuf function 78

equal element 97

equality collection abstract class 285

equality key collection abstract class 287

equality key sorted collection abstract class 289

equality sequence 145—148

equality sorted collection abstract class 291

error

handling

by math.h for complex class 18

for complex class 15—18

ios error state 40

messages

Complex Mathematics Library 17

errorCodeGroup() IException function 382

errorId() function

ICLibErrorInfo class 348

IErrorInfo class 375

IException class 383

IGUIErrorInfo class 393

ISystemErrorInfo class 524

IXLibErrorInfo class 544

IErrorInfo class 373

eventData() INotificationEvent function 404

examples

Collection Class Library

source files 2

heap 176

key bag 156

key set 163

key sorted bag 168

key sorted set 176

map 186

sequence 204

set 211

sorted map 223

sorted relation 223

sorted set 233

IException class 379

IException::TraceFn class 387

IExceptionLocation class 389

exceptionLogged() IException::TraceFn function 388

exp() complex function 11

expandBy() IRectangle function 445

expandedBy() IRectangle function 445

F
fail() ios function 41

fd() filebuf function 23

filebuf class 21—24

filebuf::openprot 28

fileName() IExceptionLocation function 389

fill() ios function 36

findPhrase() IString function 497

608 VisualAge C++ Open Class Library Reference

firstElement() Collection Class function 117

ios::fixed 35

flags() ios function 37

flush manipulator 67

flush() ostream function 67

fopen() library function 70

format flags in ios class

mutually exclusive flags 36

predefined 33—36

user-defined 39

format state

fill character 36

flags 33—36

introduction 32

parameterized manipulators 57

precision 59

width variable 48, 49, 62

format variables 32

formatting

of input streams 48

of output streams 62

freeze() function

ostrstream class 90

strstream class 88

strstreambuf class 93

fromContents() IBuffer function 337

fstream class 26—28

fstreambase class 25—26

functionName() IExceptionLocation function 389

G
gbump() streambuf function 81

gcount() istream function 54

get() istream function 52

getline() istream function 53

getSqlca() IDSAccessError function 567

good() ios function 41

gptr() streambuf function 78

IGUIErrorInfo class 391

H
handleNotificationsFor() IObserver function 411

hasChild() tree function 257

hasNotifierAttrChanged() INotificationEvent function 404

header files

See chapters on individual classes

heap 149—151

example of 176

height of a tree 245

height() function

IRectangle class 444

ISize class 462

ios::hex 34, 44

hours() ITime function 531

I
Note: Most classes beginning with an uppercase ‘I’ are listed

under their second letter

I/O Stream Library

filebuf class 21

fstream class 26

fstreambase class 25

ifstream class 28

ios class 31

iostream class 45

iostream_withassign class 45

istream class 47

istream_withassign class 56

istrstream class 89

ofstream class 29

ostream class 61

ostream_withassign class 68

ostrstream class 90

parameterized manipulators 57

stdiobuf class 69

stdiostream class 70

streambuf class 73

strstream class 88

strstreambase class 87

strstreambuf class 91

ifstream class 28—29

ignore() istream function 53

imag() complex function 14

imaginary part of a complex number 8

implementation variant

See chapters on individual Collection Classes

in_avail() streambuf function 75

includes() function

IRange class 440

IString class 487

includesDBCS() function

IBuffer class 336

IDBCSBuffer class 363

IString class 485

includesMBCS() function

IBuffer class 336

IDBCSBuffer class 363

 Index 609

includesMBCS() function (continued)

IString class 485

includesSBCS() function

IBuffer class 336

IDBCSBuffer class 363

IString class 485

indexOf() function

I0String class 313

IBuffer class 340

IDBCSBuffer class 364

IString class 481

indexOfAnyBut() function

I0String class 313

IBuffer class 340

IDBCSBuffer class 364

IString class 481

indexOfAnyOf() function

I0String class 314

IBuffer class 340

IDBCSBuffer class 365

IString class 481

indexOfPhrase() function

I0String class 316

IString class 493

indexOfWord() function

I0String class 316

IString class 493, 497

initBuffer() IString function 497

initialize() function

IBuffer class 344

IDate class 358

ITime class 531

input operator

See operator >>

insert() function

I0String class 311

IBuffer class 335

IDBCSBuffer class 362

IPointArray class 436

IString class 477, 496

ios::internal 34

internal classes

fstreambase class 25

strstreambase class 87

intersection

bags 133

flat collections 117

intersectionWith() Collection Class function 117

intersects() IRectangle function 451

invalidate() function

cursor classes 268

IObserverList::Cursor class 417

tree cursor class 272

IInvalidParameter class 395

IInvalidRequest class 397

ios class 31—44

built-in manipulators 44

error checking 40

error state 40

format state

base conversion 34

buffer flushing 36

floating-point formatting 35

integral formatting 34

member functions 36

uppercase and lowercase 35

white space and padding 33

format state variables 32

ios::app 27

ios::ate 27

ios::beg 66, 94

ios::cur 66, 94

ios::dec 34, 50, 64

ios::end 66, 94

ios::failbit 29, 30, 51

ios::fixed 35

ios::hex 34, 50, 64

ios::in 28, 94

ios::internal 34

ios::left 34

ios::nocreate 28, 30

ios::noreplace 28

ios::oct 34, 50, 64

ios::out 28, 94

ios::right 34

ios::scientific 35

ios::showbase 34

ios::showpoint 35

ios::showpos 34

ios::skipws 33

preventing looping 34

ios::stdio 36, 69

ios::trunc 28

ios::unitbuf 36

ios::uppercase 35

ios::x_fill 58

ios::x_prec 59

ios::x_width 48, 49, 62

610 VisualAge C++ Open Class Library Reference

iostream class 45—46

iostream_withassign class 45—46

ipfx() istream function 48

is_open() filebuf function 23

isAbbrevFor() IString function 498

isAbbreviationFor() IString function 487

isAlphabetic() function

IBuffer class 342

IString class 491

isAlphanumeric() function

IBuffer class 342

IString class 491

isASCII() function

IBuffer class 342

IString class 491

isAvailable() function

ICLibErrorInfo class 348

IErrorInfo class 376

IGUIErrorInfo class 393

ISystemErrorInfo class 524

IXLibErrorInfo class 545

isBinaryDigits() IString function 491

isBounded() Collection Class function 117

isCharValid() IDBCSBuffer function 368

isConnected() IDatastore function 552

isControl() function

IBuffer class 342

IString class 491

isDBCS() function

IBuffer class 337

IDBCSBuffer class 364

IString class 485

isDBCS1() IDBCSBuffer function 369

isDefaultReadOnly() IPersistentObject function 554

isDigits() function

IBuffer class 342

IString class 491

isEmpty() function

flat collections 117

IObserverList class 414

tree class 257

isEnabledForNotification() function

INotifier class 408

IStandardNotifier class 464

isFirst() Collection Class function 117

isFull() Collection Class function 118

isGraphics() function

IBuffer class 342

IString class 491

isHexDigits() function

IBuffer class 343

IString class 491

isLast() Collection Class function 118

isLeaf() tree function 257

isLeapYear() IDate function 357

isLike() IString function 487, 498

isLowerCase() function

IBuffer class 343

IString class 491

isMBCS() function

IBuffer class 337

IDBCSBuffer class 364

IString class 486

isPrevDBCS() IDBCSBuffer function 369

isPrintable() function

IBuffer class 343

IString class 492

isPunctuation() function

IBuffer class 343

IString class 492

isReadOnly() IPersistentObject function 555

isRecoverable() IException function 384

isRoot() tree function 258

isSBC() IDBCSBuffer function 369

isSBCS() function

IBuffer class 337

IDBCSBuffer class 364

IString class 486

isTraceEnabled() ITrace function 536

istream class 47—56

assignment operator 47

built-in manipulators 55

formatted input 48

input operator 49—52

input prefix function 48

unformatted input 52

istream_withassign class 47—56

istrstream class 87—90

isUpperCase() function

IBuffer class 343

IString class 492

isValid() function

cursor classes 268

IDate class 357

IObserverList::Cursor class 417

tree cursor class 272

isValidDBCS() function

IBuffer class 337

IDBCSBuffer class 364

 Index 611

isValidDBCS() function (continued)

IString class 486

isValidMBCS() function

IBuffer class 337

IDBCSBuffer class 364

IString class 486

isWhiteSpace() function

IBuffer class 343

IString class 492

isWriteLineNumberEnabled() ITrace function 536

isWritePrefixEnabled() ITrace function 536

items() IPOManager function 556

iteration order 97, 248

iterator class 275

iword() ios function 39

J
julianDate() IDate function 353

K
key bag 153—158

key collection abstract class 293

key set 159—164

key sorted bag 165—170

key sorted collection abstract class 295

key sorted set 171—179

key() Collection Class function 118

L
last-in, first-out behavior (LIFO) 237

lastElement() Collection Class function 118

lastIndexOf() function

I0String class 314

IBuffer class 340

IDBCSBuffer class 365

IString class 489

lastIndexOfAnyBut() function

I0String class 315

IBuffer class 341

IDBCSBuffer class 365

IString class 489

lastIndexOfAnyOf() function

I0String class 315

IBuffer class 341

IDBCSBuffer class 366

IString class 490

leaves of a tree 245

ios::left 34

left() IRectangle function 450

leftCenter() IRectangle function 450

leftJustify() function

IBuffer class 335

IDBCSBuffer class 362

IString class 477

length() function

IBuffer class 337

IString class 488

lengthOf() IString function 498

lengthOfWord() IString function 493

level of a tree node 245

LIFO (last-in, first-out) behavior 237

lineFrom() IString function 490

lineNumber() IExceptionLocation function 389

linked sequence 203

locate() Collection Class function 118

locateElementWithKey() Collection Class function 119

locateFirst() Collection Class function 119

locateLast() Collection Class function 119

locateNext() Collection Class function 120

locateNextElementWithKey() Collection Class function 120

locateOrAdd() Collection Class function 121

locateOrAddElementWithKey() Collection Class

function 122

locatePrevious() Collection Class function 122

locationAtIndex() IException function 383

locationCount() IException function 383

log() complex function 11

logData() IException::TraceFn function 388

logExceptionData() IException function 384

lowerBound() IRange function 439

lowercase() function

IBuffer class 335

IDBCSBuffer class 362

IString class 477

M
major IBase::Version data member 327

map 181—188

mathematical constants defined by complex class 7

mathematical functions for complex class 11

matherr() library function 18

maxCharLength() IDBCSBuffer function 368

maximum() IPair function 428

maxLong() IString data member 499

612 VisualAge C++ Open Class Library Reference

maxNumberOfElements() Collection Class function 123

maxX() IRectangle function 444

maxXCenterY() IRectangle function 448

maxXMaxY() IRectangle function

maxXMinY() IRectangle function

maxY() IRectangle function 444

messageFile() IBase function 324

IMessageText class 399

messageText() IBase function 324

minimum() IPair function 428

minor IBase::Version data member 327

minutes() ITime function 531

minX() IRectangle function 445

minXCenterY() IRectangle function 448

minXMaxY() IRectangle function 448

minXMinY() IRectangle function 449

minY() IRectangle function 445

monthName() IDate function 356, 357

monthOfYear() IDate function 357

moveBy() IRectangle function 445

movedBy() IRectangle function 445

movedTo() IRectangle function 446

moveTo() IRectangle function 446

multimedia books 602

N
n-ary tree class 247—251

cursor class for 271

name data member of c_exception class 15

name() function

IConnectFailed class 559

IDatastoreAccessError class 560

IDatastoreAdaptorException class 561

IDatastoreConnectionInUse class 562

IDatastoreConnectionNotOpen class 563

IDatastoreLogoffFailed class 564

IDatastoreLogonFailed class 565

IDisconnectError class 566

IDSAccessError class 567

IAccessError class 320

IAssertionFailure class 322

IDeviceError class 372

IException class 385

IInvalidParameter class 396

IInvalidRequest class 398

IOutOfMemory class 420

IOutOfSystemResource class 422

IOutOfWindowResource class 424

IResourceExhausted class 460

newBuffer() IBuffer function 338

newCursor() function

flat collections 123

tree class 258

next() function

IBuffer class 338

IDBCSBuffer class 364

node of a tree 245

norm() complex function 13

notFound I0String data member 318

INotificationEvent class 403

notificationId() INotificationEvent function 404

INotifier class 407

notifier() INotificationEvent function 404

notifyObservers() function

INotifier class 408, 410

IObserverList class 414

IStandardNotifier class 465, 466

now() ITime function 529

null data member

IBuffer 338

IString 499

nullBuffer IString data member 499

INumber Collection Class type 97

numberOfChildren() tree function 258

numberOfDifferentElements() Collection Class function 123

numberOfDifferentKeys() Collection Class function 123

numberOfElements() function

flat collections 123

IObserverList class 414

tree class 258

numberOfElementsWithKey() Collection Class function 123

numberOfLeaves() tree function 259

numberOfOccurrences() Collection Class function 124

numberOfSubtreeElements() tree function 258

numberOfSubtreeLeaves() tree function 259

numberOfWords() IStringParser::SkipWords function 513

numWords() IString function 493

O
IObserver class 411

observerData() INotificationEvent function 404

IObserverList class 413

IObserverList::Cursor class 417

observerList() function

INotifier class 410

IStandardNotifier class 465

obsolete declarations

overflow() 82

 Index 613

obsolete declarations (continued)

streambuf constructor 75

obsolete versions of functions

setbuf() 84

underflow() 85

occurrencesOf() function

I0String class 315

IString class 482, 497

ios::oct 34, 44

ofstream class 29—30

open_mode enumeration 27

open() function

filebuf class 23

fstream class 27

ifstream class 29

ofstream class 30

operatingSystem IException data member 386

operator ˜

IString class 485

operator -

complex class 9

IDate class 356

IPair class 427

ITime class 530

operator -=

complex class 10

IDate class 357

IPair class 428

ITime class 530

operator ->

IReference class 457

operator !

ios class 41

operator !=

IBitFlag class 331

complex class 10

cursor classes 268

IDate class 352

flat collections 102

IPair class 426

IPersistentObject class 555

IPointArray class 435

IRectangle class 442

ITime class 528

tree cursor class 271

operator /

complex class 10

operator /=

complex class 10

IPair class 428

operator []

I0String class 312

IPointArray class 436

IString class 488

operator ()

ios class 41

operator *

complex class 9

IReference class 457

operator *=

complex class 10

IPair class 427

operator &

IRectangle class 447

IString class 482

operator &=

IRectangle class 447

IString class 483

operator %=

IPair class 427

operator +

complex class 9

IDate class 356

IString class 483

ITime class 530

operator +=

complex class 10

IDate class 356

IPair class 428

IString class 483

ITime class 530

operator <

IDate class 352

IPair class 426

ITime class 528

operator <<

char values 63

complex class 11

float and double values 64

integral values 64

ostream class 62—65

pointers to void 65

stream buffers 65

IStringParser class 504

operator <=

IDate class 352

IPair class 426

ITime class 528

operator =

flat collections 102

614 VisualAge C++ Open Class Library Reference

operator = (continued)

ios class 32

iostream class 46

istream_withassign class 56

IMessageText 401

INotificationEvent 404

ostream_withassign class 68

IPersistentObject class 555

IPointArray class 436

IReference class 456

IStandardNotifier 464

IString class 484

tree class 252

operator ==

IBitFlag class 331

complex class 10

cursor classes 269

IDate class 352

flat collections 102

IPair class 426

IPersistentObject class 555

IPointArray class 435

IRectangle class 442

ITime class 528

tree cursor class 272

operator >

IDate class 352

IPair class 426

ITime class 528

operator >=

IDate class 352

IPair class 426

ITime class 528

operator >>

arrays of char 49

complex class 11

float and double values 51

integral values 50

istream class 48—52

pointers to char 49

references to char 50

streambuf objects 51

IStringParser class 505, 506, 508, 510

operator ‸

IString class 484

operator ‸=

IString class 484

operator |

IRectangle class 447

IString class 484

operator |=

IRectangle class 448

IString class 485

operator char *

IString class 493

operator const char *

ICLibErrorInfo class 348

IErrorInfo 376

IGUIErrorInfo 393

IMessageText 401

ISystemErrorInfo 524

IXLibErrorInfo 545

operator const void*

ios class 41

operator delete

IBuffer class 344

operator new

IBuffer class 344

operator signed char *

IString class 493

operator T *

IReference class 457

operator unsigned char *

IString class 493

operator void*

ios class 41

opfx() ostream function 62

ordered collection abstract class 297

osfx() ostream function 62, 69

ostream class 61—68

built-in manipulators 67

formatted output 62

output operator 63

output prefix function 62

output suffix function 62

positioning 66

unformatted output 66

ostream_withassign class 68

ostrstream class 87—90

other IException data member 386

out_waiting() streambuf function 76

IOutOfMemory class 419

IOutOfSystemResource class 421

IOutOfWindowResource class 423

output operator

See operator <<

output suffix function 62

overflow errors in complex class 13

overflow() function

IBuffer class 339

 Index 615

overflow() function (continued)

streambuf class 82

strstreambuf class 93

overlayWith() function

I0String class 312

IBuffer class 335

IDBCSBuffer class 362

IString class 477, 496

P
IPair class 425

parameterized manipulators

format state 57

introduction 57

resetiosflags() 58

setbase() 58

setfill() 58

setiosflags() 59

setprecision() 59

setw() 59

parent in a tree 245

pbackfail() streambuf function 83

pbase() streambuf function 78

pbump() streambuf function 81

pcount() ostrstream function 90

peek() istream function 55

IPersistentObject class 553

pi (mathematical constant) 8

IPoint class 431

IPointArray class 435

pointer class 277—279

polar() complex function 14

IPOManager class 556

pop() Collection Class function 124

IPosition Collection Class type 97

position() tree function 259

positioning property 97

IPostorder Collection Class type 97

postorder traversal of trees 245—246

pow() complex function 12

pptr() streambuf function 78

precision() ios function 37

IPreorder Collection Class type 97

preorder traversal of trees 245—246

presentationSystem IException data member 386

prevCharLength() IDBCSBuffer function 368

priority queue 189—192

dequeue() 114

enqueue() 116

push() Collection Class function 124

put() ostream function 66

putback() istream function 55

pword() ios function 39

Q
queue collection 193—196

dequeue() 114

enqueue() 116

R
IRange class 439

rdbuf() function

fstream class 28

ifstream class 29

ios class 42

ofstream class 30

stdiostream class 70

strstreambase class 88

rdstate() ios function 41

read() istream function 54

real part of a complex number 8

real() complex function 14

recoverable IBase data member 325

IRectangle class 441

IRefCounted class 453

IReference class 455

reference class

See chapters on individual Collection Classes

refresh() IPOManager function 556

relation 197—199

remove() function

Collection Class Library 125

I0String class 312

IBuffer class 335

IDBCSBuffer class 362

IObserverList class 414

IPointArray class 436

IString class 478

removeAll() function

flat collections 125

IObserverList class 414

tree class 259

removeAllElementsWithKey() Collection Class function 126

removeAllObservers() function

INotifier class 410

IStandardNotifier class 466

616 VisualAge C++ Open Class Library Reference

removeAllOccurrences() Collection Class function 126

removeAt() function

flat collections 126

IObserverList class 414

removeAtPosition() Collection Class function 127

removeElementWithKey() Collection Class function 127

removeFirst() Collection Class function 127

removeLast() Collection Class function 128

removeObserver() function

INotifier class 410

IStandardNotifier class 466

removeRef() function

IBuffer class 339

IRefCounted class 454

removeSubtree() tree function 259

removeWords() IString function 493

replaceAt() function

flat collections 128

tree class 260

replaceElementWithKey() Collection Class function 129

repositioning the get or put pointers 93

resetiosflags() manipulator 58

resize() IPointArray function 436

IResourceExhausted class 459

retrieve() IPersistentObject function 555

returned element 248

retval 16

reverse() function

IBuffer class 335

IDBCSBuffer class 362

IPointArray class 436

IString class 478

reversed() IPointArray function 436

ios::right 34

right() IRectangle function 450

rightCenter() IRectangle function 450

rightJustify() function

IBuffer class 336

IDBCSBuffer class 363

rightJustify() IString function 478

rollback() IDatastore function 552

root of a tree 245

S
same key 97

sbumpc() streambuf function 76

scaleBy() function

IPair class 428

IRectangle class 446

scaledBy() function

IPair class 428

IRectangle class 446

ios::scientific 35

seconds() ITime function 531

seekg() function

istream class 54

ostrstream class 90

seekoff() function

filebuf class 23

streambuf class 83

strstreambuf class 93

seekp() ostream function 66

seekpos() function

filebuf class 24

streambuf class 84

select() IPOManager function 557

sequence 201—206

sequential collection abstract class 299

sequential collections

add() behavior with 103

conditions for equality 102

set collection 207—212

setAuthentication() IDatastore function 552

setb() streambuf function 79

setbase() manipulator 58

setbuf() function

filebuf class 24

fstreambase class 26

streambuf class 84

strstreambuf class 94

setBuffer() IString function 497

setCoord1() IPair function 427

setCoord2() IPair function 427

setDatastoreName() IDatastore function 553

setDefaultBuffer() IBuffer function 339

setDefaultText() IMessageText function 401

setErrorCodeGroup() IException function 382

setErrorId() IException function 383

setEventData() INotificationEvent function 404

setf() ios function 37

setfill() manipulator 58

setg() streambuf function 79

setHeight() ISize function 462

setiosflags() manipulator 59

setLowerBound() IRange function 439

setMessageFile() IBase function 325

setNotifierAttrChanged() INotificationEvent function 405

setObserverData() INotificationEvent function 405

 Index 617

setp() streambuf function 79

setprecision() manipulator 59

setReadOnly() IPersistentObject function 555

setSeverity() IException function 384

setText() IException function 384

setToChild() function

tree class 260

tree cursor class 272

setToFirst() function

cursor classes 269

flat collections 129

IObserverList::Cursor class 418

tree class 260

setToFirstExistingChild() function

tree class 261

tree cursor class 272

setToLast() function

cursor classes 269

flat collections 129

IObserverList::Cursor class 418

tree class 261

setToLastExistingChild() function

tree class 261

tree cursor class 273

setToNext() function

cursor classes 269

flat collections 130

IObserverList::Cursor class 418

tree class 262

setToNextDifferentElement() Collection Class function 130

setToNextExistingChild() function

tree class 262

tree cursor class 273

setToNextWithDifferentKey() Collection Class function 130

setToParent() function

tree class 262

tree cursor class 273

setToPosition() Collection Class function 131

setToPrevious() function

cursor classes 270

flat collections 131

IObserverList::Cursor class 418

tree class 263

setToPreviousExistingChild() function

tree class 263

tree cursor class 273

setToRoot() function

tree class 263

tree cursor class 274

setTraceFunction() IException function 384

setUpperBound() IRange function 440

setUserName() IDatastore function 553

setValue() IBitFlag function 331

setw() manipulator 59

setWidth() ISize function 462

setX() IPoint function 432

setY() IPoint function 432

sgetc() streambuf function 76

sgetn() streambuf function 76

ios::showbase 34

ios::showpoint 35

ios::showpos 34

shrinkBy() IRectangle function 446

shrunkBy() IRectangle function 446

sibling of a tree node 245

sin() complex function 13

sinh() complex function 13

ISize class 461

size() function

IPointArray class 437

IRectangle class 445

IString class 488

sizeBy() IRectangle function 447

sizedBy() IRectangle function 447

sizedTo() IRectangle function 447

sizeTo() IRectangle function 447

skip() ios function 38

ios::skipws 33

snextc() streambuf function 76

sort() Collection Class function 131

sorted bag 213—217

sorted collection abstract class 301

sorted collections

add() behavior with 103

sorted map 219—224

sorted relation 225—228

example of 223

sorted set 229—235

source files for Collection Class Library examples 2

space() IString function 494

sputbackc() streambuf function 76

sputc() streambuf function 77

sputn() streambuf function 77

sqrt() complex function 12

square root of a complex number 12

stack 237—241

IStandardNotifier class 463

startBackwardsSearch() function

IBuffer class 345

618 VisualAge C++ Open Class Library Reference

startBackwardsSearch() function (continued)

IDBCSBuffer class 369

startSearch() function

IBuffer class 345

IDBCSBuffer class 370

stderr 69

ios::stdio 36

stdiobuf class 69—70

stdiofile() stdiobuf function 70

stdiostream class 70—71

stdout 69

stopHandlingNotificationsFor() IObserver function 412

stossc() streambuf function 77

str() function

ostrstream class 90

strstream class 88

strstreambuf class 93

stream buffer boundaries 77

streambuf class 73—85

IString class 469

I0String class 307

IStringEnum class 501

IStringParser class 503

IStringParser::SkipWords class 513

IStringTest class 515

IStringTestMemberFn class 519

strip() function

IBuffer class 336

IDBCSBuffer class 363

IString class 478, 496

stripBlanks() IString function 479

stripLeading() IString function 479

stripLeadingBlanks() IString function 479

stripTrailing() IString function 479

stripTrailingBlanks() IString function 480

strstream class 87—90

strstreambase class 88

strstreambuf class 91—94

subString() function

I0String class 313

IBuffer class 341

IDBCSBuffer class 366

IString class 488

subtree of a tree 245

sync_with_stdio() ios function 42

sync() function

filebuf class 24

istream class 55

streambuf class 85

ISystemErrorInfo class 523

T
tabular sequence 203

tellg() istream function 54

tellp() ostream function 67

template arguments

See chapters on individual Collection Classes

terminal of a tree 245

terminate() IException function 381

test() function

IStringTest class 516

IStringTestMemberFn class 520

text() function

ICLibErrorInfo class 348

IErrorInfo class 376

IException class 385

IGUIErrorInfo class 393

IMessageText class 401

ISystemErrorInfo class 525

IXLibErrorInfo class 545

textCount() IException function 385

this collection 98

this tree 248

threadId() ITrace function 538

throwCLibError() ICLibErrorInfo function 349

throwError() IErrorInfo function 376

throwGUIError() IGUIErrorInfo function 393

throwSystemError() ISystemErrorInfo function 525

throwXLibError() IXLibErrorInfo function 545

tie() ios function 43

ITime class 527

today() IDate function 353

top() function

flat collections 132

IRectangle class 450

topCenter() IRectangle function 450

topLeft() IRectangle function 450

topRight() IRectangle function 450

ITrace class 533

traceDestination() ITrace function 537

translate() function

IBuffer class 336

IDBCSBuffer class 363

IString class 480, 496

transpose() IPair function 429

tree 245—246

tree class 247—251

 Index 619

tree cursor class 271

ITreeIterationOrder Collection Class type 97

trigonometric functions for complex class 12

type data member

c_exception class 16

IStringTest class 517

U
unbuffered() streambuf function 81

undefined cursor 97

underflow() function

streambuf class 85

strstreambuf class 94

unformatted input 52

unformatted output 66

union

bags 133

flat collections 132

unionWith() Collection Class function 132

unique collections

add() behavior with 103

conditions for equality 102

ios::unitbuf 36

unordered collections

locateNext() 120

locateNextElementWithKey() 120

unrecoverable() IBase function 325

unsetf() ios function 38

update() IPersistentObject function 555

upperBound() IRange function 440

ios::uppercase 35

upperCase() function

IBuffer class 336

IDBCSBuffer class 363

IString class 480

useCount() function

IBuffer class 338

IRefCounted class 454

user-defined format flags in ios class 39

userName() IDatastore function 553

V
validate() IRectangle function 451

variant classes

See chapters on individual Collection Classes

IVBase class 541

version() IBase function 324

W
width() function

ios class 38

IRectangle class 445

ISize class 462

word() IString function 494

wordIndexOfPhrase() IString function 494

words() IString function 494

write() function

IException::TraceFn class 388

ITrace class 537

ostream class 66

writeFormattedString() ITrace function 538

writeString() ITrace function 538

writeToQueue() ITrace function 537

writeToStandardError() ITrace function 537

writeToStandardOutput() ITrace function 537

X
x() IPoint function 432

x2b() IString function 482

x2c() IString function 482

x2d() IString function 482

xalloc() ios function 39

IXLibErrorInfo class 543

Y
y() IPoint function 432

year() IDate function 358

Z
zero IString data member 499

620 VisualAge C++ Open Class Library Reference

Communicating Your Comments to IBM

IBM VisualAge C++ for OS/2
Open Class Library Reference
Volume I
Version 3.0

Publication No. S25H-6965-00

If there is something you like—or dislike—about this book, please let us know. You can use one of the
methods listed below to send your comments to IBM. If you want a reply, include your name, address,
and telephone number. If you are communicating electronically, include the book title, publication number,
page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its presentation. To
request additional publications or to ask questions or make comments about the functions of IBM products
or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United States, you can
give it to the local IBM branch office or IBM representative for postage-paid mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

¹ If you prefer to send comments electronically, use the network ID listed below. Be sure to include
your entire network address if you wish a reply.

 – Internet: torrcf@vnet.ibm.com
 – IBMLink: toribm(torrcf)
 – IBM/PROFS: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

IBM VisualAge C++ for OS/2
Open Class Library Reference
Volume I
Version 3.0

Publication No. S25H-6965-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø

Complete Ø Ø Ø Ø Ø

Easy to find Ø Ø Ø Ø Ø

Easy to understand Ø Ø Ø Ø Ø

Well organized Ø Ø Ø Ø Ø

Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
S25H-6965-00 ÉÂÔÙ

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

S25H-6965-00

ÉÂÔÙ

Part Number: 25H6965

Program Number: 30H1664

 30H1665

 30H1666

Printed in U.S.A.

25
H6
96
5

S25H-6965-00

